Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a) Ta có: \(x^2+3x+3\)
\(=x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{3}{4}\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(P=x^2+3x+3\) là \(\frac{3}{4}\) khi \(x=\frac{-3}{2}\)
b) Ta có: \(Q=x^2+2y^2+2xy-2y\)
\(=x^2+2xy+y^2+y^2-2y+1-1\)
\(=\left(x+y\right)^2+\left(y-1\right)^2-1\)
Ta có: \(\left(x+y\right)^2\ge0\forall x,y\)
\(\left(y-1\right)^2\ge0\forall y\)
Do đó: \(\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(Q=x^2+2y^2+2xy-2y\) là -1 khi x=-1 và y=1
Em có cách này nhưng không chắc
Ta sẽ c/m BĐT phụ sau:\(2x+\frac{1}{x}\ge\frac{x^2}{2}+\frac{5}{2}\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)^2}{2x}\le0\) (đúng) (ta chuyển hết VT sang vế phải rồi qui đồng lên)
Thiết lập hai BĐT tương tự và cộng theo vế ta tìm được Min
2/ \(=\left(x^2-2xy+y^2+4x-4y+4\right)+\left(y^2+2y+1\right)+2016\)
\(=\left(x-y+2\right)^2+\left(y+1\right)^2+2016\ge2016\)
Vậy Min A =2016 khi\(\left\{{}\begin{matrix}x-y=-2\\y=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)
1. Đặt A = x2+y2+z2
B = xy+yz+xz
C = 1/x + 1/y + 1/z
Lại có (x+y+z)2=9
A + 2B = 9
Dễ chứng minh A>=B
Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)
Vì x+y+z=3 => (x+y+z) /3 =1
C = (x+y+z) /3x + (x+y+x) /3y + (x+y+z)/3z
C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x)
Áp dụng bất đẳng thức (a/b+b/a) >=2
=> C >=3 ( khi và chỉ khi x=y=z=1)
P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1
Vậy ...........
Câu 2 chưa ra thông cảm
Ta có : x= 3-y-z
X2+y2+z2 <=> ( 3-y-z) 2+y2+z2
<=> 32+y2+z2 -6y-6z+2yz +z2 +y2
<=>( y2 + 2yz +z2 )+(z2 -6z+32)+(y2-6y+32)-9
<=> ( y+z)2 +(z-3)2+(y-3)2-9
<=> ( y+z)2 +(z-x-y-z)^2 +(y-x-z-y)^2-9
<=> (y+z)^2 + (-x-y)^2 +( -x-z)^2-9 >= -9
<=> minn = -9 <=> x=y=z =0
Cậu xem thử như vậy có hợp lý không, mình không chắc lắm
Áp dụng bất đẳng thức AM - GM t có:
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge4\sqrt{\frac{x^2}{x+y}.\frac{x+y}{4}}=x\)(1)
Tương tự t có: \(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\)(2)
\(\frac{x^2}{x+y}+\frac{x+y}{4}\ge z\)(3)
Từ (1); (2); (3) t có:
\(\left(\frac{x^2}{y+z}+\frac{y+z}{4}\right)+\left(\frac{y^2}{z+x}+\frac{x+z}{4}\right)+\left(\frac{x^2}{x+y}+\frac{x+y}{4}\right)\ge x+y+z\)
Từ x + y + z \(\ge\) 4, t có:
\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{x^2}{x+y}\ge\frac{x+y+z}{4}\)
Vậy giá trị nhỏ nhất của P là 1, đạt được khi \(x=y=z=\frac{2}{3}\)
áp dụng bđt Bunyakovsky dạng phân thức ta có: P >=(x+y+z)^2/(x+y+z)=(x+y+z)/2=2
đẳng thức xảy ra <=> x=y=z=4/3
\(A\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{3}\ge\frac{\left(1+\frac{9}{x+y+z}\right)^2}{3}=\frac{10^2}{3}=\frac{100}{3}\)
ĐTXR ⇔ x = y = z = (x+y+z)/3 = 1/3
a) A=(x+z)(y+t)
= xy+xt+zy+zt
Áp dụng bất đẳng thức cô si cho 2 số ta có
x2+y2 ≥ 2\(\sqrt{x^2y^2}\)
⇔x2+y2 ≥ 2xy
TT ta có
x2+t2 ≥ 2xt
y2+z2 ≥ 2yz
z2+t2 ≥ 2zt
cộng vế vs vế ta có
=> x2+y2+x2+t2+y2+z2+t2 ≥ 2xy+2xt+2yz+2zt
⇔ 2(x2+y2+z2+t2) ≥ 2(xy+xt+yz+zt)
⇔ 2 .1 ≥2 A
⇔ 1≥ A
⇔ A ≤ 1
=> Max A =1 dấu "=" xảy ra khi x=y=t=z= \(\pm\dfrac{1}{2}\)
Câu b)
Đây là bài toán quen thuộc của dạng toán xác định điểm rơi trong BĐT Cô-si:
Áp dụng BĐT Cô-si:
\(\frac{2}{3}x^2+\frac{2}{3}y^2\geq 2\sqrt{\frac{2}{3}x^2.\frac{2}{3}y^2}=\frac{4}{3}|xy|\geq \frac{4}{3}xy\)
\(\frac{1}{3}x^2+\frac{4}{3}t^2\geq 2\sqrt{\frac{1}{3}x^2.\frac{4}{3}t^2}=\frac{4}{3}|xt|\geq \frac{4}{3}xt\)
\(\frac{1}{3}y^2+\frac{4}{3}z^2\geq 2\sqrt{\frac{1}{3}y^2.\frac{4}{3}z^2}=\frac{4}{3}|yz|\geq \frac{4}{3}yz\)
\(\frac{2}{3}z^2+\frac{2}{3}t^2\geq 2\sqrt{\frac{2}{3}z^2.\frac{2}{3}t^2}=\frac{4}{3}|zt|\geq \frac{4}{3}zt\)
Cộng theo vế các BĐT thu được và rút gọn:
\(\Rightarrow x^2+y^2+2z^2+2t^2\geq \frac{4}{3}(xy+xt+yz+zt)\)
\(\Leftrightarrow \frac{4}{3}(xy+xt+yz+zt)\leq 1\)
\(\Leftrightarrow B=(x+z)(y+t)\leq \frac{3}{4}\) hay $B_{\max}=\frac{3}{4}$
Dấu bằng xảy ra khi \(x=y=2z=2t\Leftrightarrow (x,y,z,t)=\left(\frac{1}{\pm \sqrt{3}}; \frac{1}{\pm\sqrt{3}}; \frac{1}{\pm 2\sqrt{3}}; \frac{1}{\pm 2\sqrt{3}}\right)\)
Ta có : \(A=\left(x+z\right)\left(y+t\right)=xy+xt+yz+zt\)
Lại có : \(xy\le\frac{x^2+y^2}{2}\) , \(xt\le\frac{x^2+t^2}{2}\) , \(yz\le\frac{y^2+z^2}{2}\) , \(zt\le\frac{z^2+t^2}{2}\)
Suy ra : \(xy+xt+yz+zt\le\frac{x^2+y^2+x^2+t^2+y^2+z^2+z^2+t^2}{2}=\frac{2\left(x^2+y^2+z^2+t^2\right)}{2}=1\)
\(\Rightarrow A\le1\)
Vậy Max A = 1 \(\Leftrightarrow x=y=z=t=\frac{1}{2}\)
Bài này phải là tìm GTLN nhé :)