Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=|2x+2015|-3
Ta thấy:
\(\left|2x+2015\right|\ge0\) với mọi x
\(\Rightarrow\left|2x+2015\right|-3\ge0-3=-3\)
\(\Rightarrow A\ge-3\)
Dấu = khi |2x+2015|=0 <=>2x=-2015
<=>x=-2015/2
Vậy Amin=-3 <=>x=-2015/2
a, Để A có GTNN thì |2.x-1/3| phải có GTNN
\(\Rightarrow\)|2.x-1/3|=0 \(\Leftrightarrow\)x=1/6
A có GTNN =107 khi x=1/6
b,(3x-5)^20 với mọi x
Để A có GTNN (3x-5)^2 phải có GTNN
\(\Rightarrow\)(3x-5)^2=0 \(\Leftrightarrow\)x=5/3
B co GTNN =-2015 khi x=5/3
c,Để C có GTLN khi |2x-3| phải có GTNN
\(\Rightarrow\)|2X-3|=0 \(\Leftrightarrow\)X=1,5
C co GTLN =1 khi x=1,5
đ,(4-2x)^2 0 với mọi x
Để D có GTLN khi (4-2x)^2 phải có GTNN
\(\Rightarrow\)(4-2x)^2=0 \(\Leftrightarrow\)x=2
D có GTLN =2016 khi x=2
a)Ta có: |x+3|>=0
=>|x+3|+15>=15 hay A>=15
Nên GTNN của A là 15 khi:
x+3=0
x=0-3
x=-3
b)B=|2x+1|-2015
Ta có: |2x+1|>=0
=>|2x+1|-2015>=-2015 hay B>=-2015
Nên GTNN của B là -2015 khi:
2x+1=0
2x=0-1
x=-1/2
c)C=|3x-4|+|y-1|+17
Ta có: |3x-4|>=0
|y-1|>=0
=>|3x-4|+|y-1|+17>=17 hay C>=17
Nên GTNN của C là 17 khi:
3x-4=0 hay y-1=0
3x=0+4 y=0+1
x=4/3 y=1
Vì \(\left(2x+2015\right)\ge0\)vời mọi x
Nên \(\left(2x+2015\right)-3\ge-3\)với mọi x
Min \(\left(2x+2015\right)-3=3\Leftrightarrow2x+2015=0\)\(\Leftrightarrow2x=-2015\)\(\Leftrightarrow x=\frac{-2015}{2}\)
Vậy Min \(\left(2x+2015\right)-3=3\Leftrightarrow x=\frac{-2015}{2}\)