K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

\(19-\left|2x+2016\right|-\left|3\right|=19-\left|2x+2016\right|-3=16-\left|2x+2016\right|\)

vì \(\left|2x+2016\right|\ge0\)

=> \(-\left|2x+2016\right|\le0\)

=>\(16-\left|2x+2016\right|\le16\)

Vậy GTLN của bt trên là 16 khi 2x+2016=0<=>x=-1008

1 tháng 9 2016

tks nhieu nha

29 tháng 8 2016

\(A=\left(2x+\frac{1}{3}\right)^4-1\) . Có: \(\left(2x+\frac{1}{3}\right)\ge0\)

\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\)

Dấu = xảy ra khi: \(2x+\frac{1}{3}=0\)

\(\Rightarrow2x=-\frac{1}{3}\)

\(\Rightarrow x=-\frac{1}{3}:2=-\frac{1}{6}\)

Vậy: \(Min_A=-1\) tại \(x=-\frac{1}{6}\)

4 tháng 8 2016

ta có a=3-x(1-2x)-(x-1)(x+2)=3-x+2x^2 -x^2-x+2=x^2-2x+5=(x^2 -2x+1)+4=(x-1)2+4< hoặc =4 <=>gtnn của a là 4 khi x-1=0 =>x=1

12 tháng 12 2016

(x-1)^2+2(x-3) tinh

a) \(A=31-\sqrt{2x+7}\)

Ta có: \(-\sqrt{2x+7}\le0\forall x\)

\(\Rightarrow31-\sqrt{2x+7}\le31\forall x\)

Vậy MIN A = 31

14 tháng 3 2017

a ) \(A=\left|2x-2\right|+\left|2x-2019\right|\ge\left|2-2x+2x-2019\right|=\left|2-2019\right|=2017\)

Để A đạt GTNN là 2017 <=> \(\left(2-2x\right)\left(2x-2019\right)\ge0\Rightarrow1\le x\le\frac{2019}{2}\)

b ) \(\left|2x-4\right|-\left|6-3x\right|=-1\)

\(\Leftrightarrow2\left|x-2\right|-3\left|x-2\right|=-1\)

\(\Leftrightarrow-\left|x-2\right|=-1\)

\(\Rightarrow\left|x-2\right|=1\)

\(\Rightarrow x=1;3\)

Mà x lớn nhất => x = 3

10 tháng 4 2017

= 1/4 nhe

24 tháng 2 2017

Câu 2:

  \(=2\left(x^2-\frac{1}{2}+\frac{3}{2}\right)\)

  \(=2\left(x^2-\frac{1}{2}+\left(\frac{1}{4}\right)^2-\left(\frac{1}{4}\right)^2+\frac{3}{2}\right)\)

   \(=2\left(\left(x-\frac{1}{4}\right)^2+\frac{23}{16}\right)\)

   \(=2\left(x-\frac{1}{4}\right)^2+2.\frac{23}{16}\)

   \(=2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}\le\frac{23}{8}\)

Vậy MaxB = \(\frac{23}{8}\Leftrightarrow x-\frac{1}{4}=0\)

                            \(\Leftrightarrow x=\frac{1}{4}\)

   

a) ta có |1-2x|>=0

=>3.|1-2x|>=0

=>A>=0-5

A>=-5

dấu "=" xảy ra kh và chỉ khi 1-2x=0

2x=1

x=1/2

Vậy GTNN của A=-5 khi x=1/2

b)ta có -|2-3x|<=0

=>B<=3/4-0

B<=3/4

dấu "=" xảy ra khi và chỉ khi 2-3x=0

3x=2

x=2/3

Vậy GTLN của B=3/4 khi x=2/3

10 tháng 8 2017

\(A=31-\sqrt{2x+7}\)

Ta có: điều kiện để có căn:\(\sqrt{2x+7}\) thì :\(2x+7\ge0\Rightarrow2x\ge-7\Rightarrow x\ge-3,5\)

Với mọi \(x\ge-3,5\) ta có:

\(\sqrt{2x+7}\ge0\)

\(\Rightarrow A=31-\sqrt{2x+7}\le31\)

Dấu "=" xảy ra khi:

\(\sqrt{2x+7}=0\Rightarrow2x=-7\Rightarrow x=-3,5\)

Vậy \(MAX_A=31\) khi \(x=-3,5\)

\(B=-9+\sqrt{7+x}\)

Ta có: điều kiện để có căn \(\sqrt{7+x}\) thì:

\(x\ge-7\)

Với mọi \(x\ge-7\) ta có:

\(\sqrt{7+x}\ge0\)

\(\Rightarrow-9+\sqrt{7+x}\ge-9\)
Dấu "=" xảy ra khi:

\(\sqrt{7+x}=0\Rightarrow x=-7\)

\(\Rightarrow MIN_B=-9\) khi \(x=-7\)

10 tháng 8 2017

a, Sửa đề: Tìm GTLN của biểu thức

\(\sqrt{2x+7}\ge0\) \(\Rightarrow-\sqrt{2x+7}\le0\)

\(\Rightarrow31-\sqrt{2x+7}\le31\)

Dấu ''='' xảy ra khi :

\(-\sqrt{2x+7}=0\Rightarrow2x+7=0\Rightarrow x=-3,5\)

Vậy \(A_{Max}=31\) khi và chỉ khi x = -3,5

b, Tìm GTNN của B

Giải: \(B=-9+\sqrt{7+x}=\sqrt{7+x}-9\)

\(\sqrt{7+x}\ge0\Rightarrow\sqrt{7+x}-9\ge-9\)

Dấu ''='' xảy ra khi \(\sqrt{7+x}=0\Rightarrow x=-7\)

Vậy \(B_{Min}=-9\) khi x = -7

p/s: Lần sau gửi đề cẩn thận hơn ||^^