Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=B_1+B_2+...+B_{2016}\)
\(B_1=\dfrac{\sqrt{x+1}-\sqrt{x}}{\left(\sqrt{x}+\sqrt{x+1}\right)\left(\sqrt{x+1}-\sqrt{x}\right)}=\dfrac{\sqrt{x+1}-\sqrt{x}}{x+1-x}\)
\(B_1=\sqrt{x+1}-\sqrt{x}\)
\(B_2=\sqrt{x+2}-\sqrt{x+1}\)
\(B_3=\sqrt{x+3}-\sqrt{x+2}\)
...
\(B_{2015}=\sqrt{x+2015}-\sqrt{x+2014}\)
\(B_{2016}=\sqrt{x+2016}-\sqrt{x+2015}\)
\(B=\sqrt{x+2016}-\sqrt{x}\)
\(B\left(2017\right)=\sqrt{2017+2016}-\sqrt{2017}\)
B = \(\dfrac{1}{\sqrt{x}+\sqrt{x+1}}+\dfrac{1}{\sqrt{x+1}+\sqrt{x+2}}+...+\dfrac{1}{\sqrt{x+2015}+\sqrt{x+2016}}\)
B = \(\dfrac{\sqrt{x}-\sqrt{x+1}}{x-x-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{x+1-x-2}+...+\dfrac{\sqrt{x+2015}-\sqrt{x+2016}}{x+2015-x-2016}\)
B = \(\dfrac{\sqrt{x}-\sqrt{x+1}}{-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}+...+\dfrac{\sqrt{x+2015}-\sqrt{x+2016}}{-1}\)
B = \(-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-...-\sqrt{2015}+\sqrt{2016}\)
B = \(-\sqrt{x}+\sqrt{2016}\)
Khi x = 2017
B = \(-\sqrt{2017}+\sqrt{2016}=\sqrt{2016}-\sqrt{2017}\)
a: ĐKXĐ: x>=0; x<>1
b: \(A=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)
c: x>=0
=>-x<=0
=>-x+1<=1
Dấu = xảy ra khi x=0
ĐKXĐ: \(x\ge0,x\ne1\)
\(A=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-1\)
= \(\dfrac{x+\sqrt{x}+1}{x+1}:\left(\dfrac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)-1\)
= \(\dfrac{\left(x+\sqrt{x}+1\right)\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)^2}-1\)
= \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}-1\)
= \(\dfrac{x+\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}\)
= \(\dfrac{x+2}{\sqrt{x}-1}\)
\(M=\dfrac{B}{A}=\dfrac{\dfrac{\sqrt{x}+1}{\sqrt{x}+3}}{\dfrac{x-\sqrt{x}+2}{\sqrt{x}+3}}=\dfrac{\sqrt{x}+1}{x-\sqrt{x}+2}\)\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}}\)
Dễ thấy: \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall x\)
Và \(\sqrt{x}+1\ge1\forall x\)\(\Rightarrow M=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}}\ge1\)
Xảy ra khi \(x=1\)
Lời giải:
Ta có:
\(B:A=\frac{\sqrt{x}+1}{\sqrt{x}+3}:\frac{x-\sqrt{x}+2}{\sqrt{x}+3}=\frac{\sqrt{x}+1}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{x-\sqrt{x}+2}=\frac{\sqrt{x}+1}{x-\sqrt{x}+2}\)
Đặt \(\sqrt{x}+1=t\Rightarrow \sqrt{x}=t-1\)
Khi đó:
\(M=B:A=\frac{t}{(t-1)^2-(t-1)+2}=\frac{t}{t^2-3t+4}\) \((t\ge 1)\)
\(\Rightarrow M(t^2-3t+4)-t=0\)
\(\Leftrightarrow Mt^2-t(3M+1)+4M=0\)
Nếu \(M=0\rightarrow t=0\) (vô lý vì \(t\geq 1\) ) \(\rightarrow M\neq 0\)
Khi đó: \(\Delta=(3M+1)^2-16M^2\geq 0\)
\(\Leftrightarrow -7M^2+6M+1\geq 0\)
\(\Leftrightarrow -\frac{1}{7}\leq M\le 1\), tức là M đạt max bằng $1$
Khi đó \(t^2-4t+4=0\Leftrightarrow t=2\) \(\Leftrightarrow x=1\) (thỏa mãn)
Vậy \(x=1\)
Lời giải:
Ta có: \(\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)
Ta thấy: \(\sqrt{x}\geq 0, \forall x\geq 0\Rightarrow \sqrt{x}+1\geq 1\)
\(\Rightarrow \frac{2}{\sqrt{x}+1}\leq \frac{2}{1}=2\)
\(\Rightarrow 1-\frac{2}{\sqrt{x}+1}\geq 1-2=-1\)
Vậy GTNN của biểu thức là $-1$ khi \(\sqrt{x}=0\Leftrightarrow x=0\)
\(A=\sqrt{9-x^2}+4\) Đạt Max khi \(\sqrt{9-x^2}\)đạt giá trị lớn nhất. Hay (9-x2) đạt giá trị lớn nhất.
Do x2 \(\ge\)0 với mọi x => để 9-x2 đạt giá trị lớn nhất thì x2 phải đạt GTNN => x2=0 => x=0
=> \(A_{max}=\sqrt{9}+4=3+4=7\)đạt được khi x=0
b/ \(B=6\sqrt{x}-x-15=-x+6\sqrt{x}-9-6=-6-\left(x-6\sqrt{x}+9\right)\)
=> \(B=-6-\left(\sqrt{x}-3\right)^2\)
Do \(\left(\sqrt{x}-3\right)^2\ge0\) Với mọi x => Để Bmax thì \(\left(\sqrt{x}-3\right)^2\) đạt Min => \(\left(\sqrt{x}-3\right)^2=0\)
=> Bmin=-6 đạt được khi \(\left(\sqrt{x}-3\right)^2=0\)hay x=9
c/ \(C=2\sqrt{x}-x=1-1+2\sqrt{x}-x=1-\left(1-2\sqrt{x}+x\right)\)
=> \(C=1-\left(1-\sqrt{x}\right)^2\) => Do \(\left(1-\sqrt{x}\right)^2\ge0\) Với mọi x => Để C đạt max thì \(\left(1-\sqrt{x}\right)^2\)đạt min => \(\left(1-\sqrt{x}\right)^2=0\)
=> Cmin = 1 Đạt được khi x=1