\(J=C_{20}^0-2^2C^1_{20}+2^4C^2_{20}-...+2^{40}C^{20}_{20}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 12 2021

Xét khai triển: 

\(\left(x^2-1\right)^{20}=C_{20}^0-C_{20}^1.x^2+C_{20}^2x^4-...+C_{20}^{20}x^{20}\)

Thay \(x=2\)

\(\Rightarrow3^{20}=C_{20}^0-2^2C_{20}^1+2^4C_{20}^2-...+2^{40}C_{20}^{20}\)

\(\Rightarrow J=3^{20}\)

31 tháng 8 2016

1=(2n+1)C0, (2n+1)Cn=(2n+1)C(n+1)...

 

10 tháng 11 2016

\(\sum_{k=1}^nC^k_{2n+1}=2^{20}-1\)

\(\frac{\sum_{k=1}^n\left(2C^k_{2n+1}\right)+1+1}{2}=2^{20}\)

\(C^0_{2n+1}+\sum_{k=1}^n\left(C^k_{2n+1}+C_{2n+1}^{2n+1-k}\right)+C^{2n+1}_{2n+1}=2^{21}\)

\(\sum_{k=0}^{2n+1}C^k_{2n+1}=2^{21}\)

\(\Rightarrow2n+1=21\Rightarrow n=10\)

Số hạng chứa \(x^{26}\) có dạng là:

\(C^k_{10}.\left(\frac{1}{x^4}\right)^k.\left(x^7\right)^{10-k}\Rightarrow-4k+7.\left(10-k\right)=26\)

\(\Rightarrow k=4\)

hệ số của \(x^{26}\) là:

\(C^4_{10}=210\)

27 tháng 11 2021

dạ chỉ em cái dòng số 3 sao ra 21 nha, em ko biết .. oho

1 tháng 4 2021

 Mình nhầm \(C^1_{2016}a_{2015}\)thành  \(C^1_{2016}a^{2015}\)

6 tháng 11 2019

chỉ mk cách làm với @Nguyễn Việt Lâm

NV
6 tháng 11 2019

Xét khai triển:

\(\left(x+1\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1x+C_{2n+1}^2x^2+...+C_{2n+1}^{2n+1}x^{2n+1}\)

Cho \(x=1\) ta được:

\(2^{2n+1}=C_{2n+1}^0+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^{2n+1}\)

\(=1+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n+C_{2n+1}^{n+1}+...+C_{2n+1}^{2n}+1\)

\(=1+C_{2n+1}^1+...+C_{2n+1}^n+C_{2n+1}^n+...+C_{2n+1}^1+1\)

\(=2\left(1+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n\right)\)

\(\Rightarrow2^{2n}-1=C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n\)

\(\Rightarrow2^{2n-1}=2^{20}-1\Rightarrow2n=20\Rightarrow n=10\)

Khai triển: \(\left(x^2-x-1\right)^{10}\)

\(\left\{{}\begin{matrix}k_0+k_1+k_2=10\\k_1+2k_2=6\end{matrix}\right.\) \(\Rightarrow\left(k_0;k_1;k_2\right)=\left(4;6;0\right);\left(5;4;1\right);\left(6;2;2\right);\left(7;0;3\right)\)

Hệ số của \(x^6:\)

\(\frac{10!}{4!.6!}+\frac{10!}{5!.4!}.\left(-1\right)^5+\frac{10!}{6!.2!.2!}+\frac{10!}{7!.3!}.\left(-1\right)^7\)

NV
16 tháng 9 2020

Xét khai triển:

\(\left(x-1\right)^{2n}=C_{2n}^0-C_{2n}^1x+C_{2n}^2x^2-C_{2n}^3x^3+...-C_{2n}^{2n-1}x^{2n-1}+C_{2n}^{2n}x^{2n}\)

Thay \(x=1\) ta được:

\(0=C_{2n}^0-C_{2n}^1+C_{2n}^2-C_{2n}^3+..-C_{2n}^{2n-1}+C_{2n}^{2n}\)

\(\Leftrightarrow C_{2n}^0+C_{2n}^2+...+C_{2n}^{2n}=C_{2n}^1+C_{2n}^3+...+C_{2n}^{2n-1}\)

NV
29 tháng 9 2020

a. Cho \(x=1\) ta được:

\(\left(1+1+2\right)^{10}=a_0+a_1+a_2+...+a_{20}\)

\(\Rightarrow S_1=4^{10}\)

b. Cho \(x=2\) ta được:

\(\left(1+2+8\right)^{10}=a_0+a_1.2+a_2.2^2+...+a_{20}.2^{20}\)

\(\Rightarrow S_2=11^{10}\)

c.

\(\left(1+x+2x^2\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(x+2x^2\right)^k=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i.2^ix^{i+k}\)

Số hạng chứa \(\Rightarrow\left\{{}\begin{matrix}i+k=17\\0\le i\le k\le10\end{matrix}\right.\)

\(\Rightarrow\left(i;k\right)=\left(7;10\right);\left(8;9\right)\)

\(\Rightarrow a_{17}=C_{10}^{10}C_{10}^7.2^7+C_{10}^9.C_9^8.2^8=...\)

NV
8 tháng 6 2019

Xét khai triển:

\(\left(x+1\right)^n=C_n^0+C_n^1x+C_n^2x^2+...+C_n^nx^n\)

\(\Leftrightarrow x\left(x+1\right)^n=C_n^0.x+C_n^1x^2+C_n^2x^3+...+C_n^nx^{n+1}\)

Thay \(n=2000\) ta được:

\(x\left(x+1\right)^{2000}=C_{2000}^0x+C_{2000}^1x^2+C_{2000}^2x^3+...+C_{2000}^{2000}x^{2001}\)

Đạo hàm 2 vế:

\(\left(x+1\right)^{2000}+2000x\left(x+1\right)^{1999}=C_{2000}^0+2C_{2000}^1x+...+2001C_{2000}^{2000}x^{2000}\)

Thay \(x=1\) ta được:

\(2^{2000}+2000.2^{1999}=C_{2000}^0+2C_{2000}^1+...+2001.C_{2000}^{2000}\)

\(\Rightarrow S=2^{1999}\left(2+2000\right)=2002.2^{1999}\)

29 tháng 3 2016

a) gt \(\Leftrightarrow\) s-\(10\times\left(\frac{2}{11\times13}+\frac{2}{13\times15}+...+\frac{2}{53\times55}\right)=\frac{3}{11}\)

\(\Leftrightarrow s-10\times\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)

\(\Leftrightarrow S-10\times\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)

\(\Leftrightarrow S=1\)

29 tháng 3 2016

câu b hình như sai đề

Phải là \(\frac{1}{36}\) chứ ko phải \(\frac{1}{39}\)