\(\sqrt{3x+\sqrt{5x-1}}+\sqrt{3x-\sqrt{6x-1}}\)

với...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2020

Đk: x = \(5+2\sqrt{7}\)> 5

Đặt A = \(\sqrt{3x+\sqrt{6x-1}}-\sqrt{3x-\sqrt{6x-1}}\)

A2 = \(\left(\sqrt{3x+\sqrt{6x-1}}-\sqrt{3x-\sqrt{6x-1}}\right)^2\)

A2 = \(3x+\sqrt{6x-1}+3x-\sqrt{6x-1}-2\sqrt{\left(3x+\sqrt{6x-1}\right)\left(3x-\sqrt{6x-1}\right)}\)

A2 = \(6x-2\sqrt{9x^2-6x+1}\)

A2 = \(6x-2\sqrt{\left(3x-1\right)^2}\) (vì x > \(\frac{1}{3}\))

A2 = \(6x-2\left(3x-1\right)\)

A2 = \(6x-6x+2\)

A2 = 2

=> A = \(\sqrt{2}\)

Vậy ....

2 tháng 9 2020

Đặt:    \(A=\sqrt{3x+\sqrt{6x-1}}-\sqrt{3x-\sqrt{6x-1}}\)

=>    \(A^2=3x+\sqrt{6x-1}+3x-\sqrt{6x-1}-2\sqrt{\left(3x+\sqrt{6x-1}\right)\left(3x-\sqrt{6x-1}\right)}\)

=>    \(A^2=6x-2\sqrt{9x^2-6x+1}\)

=>    \(A^2=6x-2\sqrt{\left(3x-1\right)^2}\)

Mà:    \(x=5+2\sqrt{7}\Rightarrow x>\frac{1}{3}\Rightarrow3x>1\Rightarrow3x-1>0\)

=>   \(A^2=6x-2\left(3x-1\right)\)

=>    \(A^2=6x-6x+2=2\)

Mà:    \(\sqrt{3x+\sqrt{6x-1}}>\sqrt{3x-\sqrt{6x-1}}\Rightarrow A>0\)

=>    \(A=\sqrt{2}\)

VẬY    \(A=\sqrt{2}\)

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

a) \(\left\{{}\begin{matrix}x\ge0\\-\sqrt{x+7}< 0\\-5x-4\ne0\\-3x+2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x+7>0\\-5x\ne4\\-3x\ne-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>-7\\x\ne\frac{-4}{5}\\x\ne\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne\frac{2}{3}\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}x\ge0\\x+4\ne0\\x-2\ge0\\-2x-10\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne-4\\x\ge2\\-2x\ne10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne-5\end{matrix}\right.\Leftrightarrow x\ge2\)

c) \(\left\{{}\begin{matrix}x\ge0\\-x-3\ne0\\2x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne-3\\x\ne-\frac{3}{2}\end{matrix}\right.\Leftrightarrow x\ge0\)

d) \(\left\{{}\begin{matrix}2x-7\ge0\\x\ge0\\3x-4\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{7}{2}\\x\ge0\\x\ne\frac{4}{3}\\x\ne3\end{matrix}\right.\Leftrightarrow x\ge\frac{7}{2}\)

4 tháng 8 2020

em cảm ơn nhiều ạ

30 tháng 8 2018

Bài 1 : Ta có :

\(A=\sqrt{3x+\sqrt{6x-1}}+\sqrt{3x-\sqrt{6x-1}}\)

\(A\sqrt{2}=\sqrt{6x+2\sqrt{6x-1}}+\sqrt{6x-2\sqrt{6x-1}}\)

\(=\sqrt{6x-1+2\sqrt{6x-1}+1}+\sqrt{6x-1-2\sqrt{6x-1}+1}\)

\(=\sqrt{\left(\sqrt{6x-1}+1\right)^2}+\sqrt{\left(\sqrt{6x-1}-1\right)^2}\)

\(=\left|\sqrt{6x-1}+1\right|+\left|\sqrt{6x-1}-1\right|\)

\(=\sqrt{6x-1}+1+\sqrt{6x-1}-1\)

\(=2\sqrt{6x-1}\)

\(\Rightarrow A=\sqrt{2}\left(\sqrt{6x-1}\right)\)

Thay \(x=4+\sqrt{10}\) vào A ta được :

\(A=\sqrt{2}.\sqrt{6\left(4+\sqrt{10}\right)-1}=\sqrt{2}.\sqrt{24+6\sqrt{10}-1}\)

\(=\sqrt{2}.\sqrt{23+6\sqrt{10}}=\sqrt{46+12\sqrt{10}}\)

\(=\sqrt{36+12\sqrt{10}+10}=\sqrt{\left(6+\sqrt{10}\right)^2}=6+\sqrt{10}\)

Vậy \(A=6+\sqrt{10}\) tại \(x=4+\sqrt{10}\)

31 tháng 8 2018

Quang Nguyễn Yep

17 tháng 10 2019

\(a,x=7-4\sqrt{3}=4-2.2\sqrt{3}+3\) (Thỏa mãn ĐKXĐ)

\(=\left(2-\sqrt{3}\right)^2\)

\(B=\frac{2}{\sqrt{x}-2}=\frac{2}{\sqrt{\left(2-\sqrt{3}\right)^2}-2}\)

\(=\frac{2}{2-\sqrt{3}-2}=-\frac{2\sqrt{3}}{3}\)

\(b,P=\frac{B}{A}=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}\right)\)

\(=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(=\frac{2}{\sqrt{x}-2}:\frac{\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{2}{\sqrt{x}-2}:\frac{2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{2}{\sqrt{x}-2}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\left(\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

17 tháng 10 2019

\(P=\frac{4}{3}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}+1}=\frac{4}{3}\)

\(\Leftrightarrow3\left(\sqrt{x}+2\right)=4\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow3\sqrt{x}+6=4\sqrt{x}+4\)

\(\Leftrightarrow6-4=4\sqrt{x}-3\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)(ko thỏa mãn ĐKXĐ)

=>pt vo nghiệm

d,\(\left(\sqrt{x}+1\right)P-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\frac{\sqrt{x}+2}{\sqrt{x}+1}-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)

\(\Leftrightarrow\sqrt{x}+2-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)

\(\Leftrightarrow-4\sqrt{x-1}+28=-6x+10\sqrt{5x}\)

\(\Leftrightarrow x=5\)