\(\frac{2x-y}{3}=\frac{x+2y}{4}=\frac{xy}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

    \(\frac{x}{y^3-1}-\frac{y}{x^3-1}\)

\(=\frac{1-y}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}\)

\(=\frac{-x^2-x-1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\)

\(=\frac{\left(y^2-x^2\right)+y-x}{x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1}\)

\(=\frac{\left(y-x\right)\left(y+x\right)+y-x}{x^2y^2+x^2y+xy^2+x^2+xy+y^2+x+y+1}\)

\(=\frac{y-x+y-x}{x^2y^2+xy\left(x+y\right)+x\left(x+y\right)+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+xy+x+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+x\left(y+1\right)+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+\left(1-y\right)\left(y+1\right)+y^2+\left(x+y\right)+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+1-y^2+y^2+1+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+3}\)

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

11 tháng 9 2016

2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)

\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3

3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)

4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)

19 tháng 8 2017

\(\frac{x^2}{y}+x=2\\\)\(\frac{y^2}{x}+y=\frac{1}{2}\)

Xét 2 biểu thức trên ta có 

\(\left(\frac{x^2}{y}+x\right).\left(\frac{y^2}{x}+y\right)=\frac{1}{2}.2\)

\(\frac{x^2}{y}.\frac{y^2}{x}+\frac{x^2}{y}.y+x.\frac{y^2}{x}+x.y=1\)

\(xy+x^2+y^2+xy=1\\\)

\(x^2+2xy+y^2=1\\\)

\(\left(x+y\right)^2=1\)

\(\hept{\begin{cases}x+y=1\\x+y=-1\end{cases}}\)

\(\hept{\begin{cases}x=-y\\x=-1-y\end{cases}}\)

13 tháng 9 2016

(x2 - 2 +\(\frac{1}{x^2}\)) + (y2 - 2 + \(\frac{1}{y^2}\)) = 0

<=> ( x - \(\frac{1}{x}\))2 + (y - \(\frac{1}{y}\))2 = 0

<=> \(\hept{\begin{cases}x=\frac{1}{x}\\y=\frac{1}{y}\end{cases}}\)<=> (x, y) = (1, 1;1,-1;-1,1;-1,-1)