Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(a,b\right)=12\)nên ta đặt \(a=12m,b=12n,m>0,n>0,\left(m,n\right)=1\).
\(\frac{a}{b}=\frac{12m}{12n}=\frac{m}{n}=\frac{49}{56}=\frac{7}{8}\)
suy ra \(m=7,n=8\)
\(\Rightarrow a=84,b=96\).
Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 7 - Học toán với OnlineMath
Đặt \(A=\frac{a+1}{b}+\frac{b+1}{a}=\left(\frac{a+1}{b}+1\right)+\left(\frac{b+1}{a}+1\right)-2=\left(a+b+1\right)\left(\frac{1}{a}+\frac{1}{b}\right)-2\)
Vì A có giá trị là một số tự nhiên nên \(\frac{1}{a}+\frac{1}{b}\) phải có giá trị là số tự nhiên hay
\(\frac{a+b}{ab}\) là một số tự nhiên \(\Rightarrow\left(a+b\right)⋮ab\)
Vì d là ƯCLN(a,b) nên \(a=dm,b=dn\) \(\Rightarrow\begin{cases}a+b=d\left(m+n\right)\\ab=d^2mn\end{cases}\) (m,n thuộc N)
\(\Rightarrow\frac{a+b}{ab}=\frac{d\left(m+n\right)}{d^2mn}=\frac{m+n}{dmn}\)
=> (m+n) chia hết cho dmn \(\Rightarrow m+n\ge d\)
\(\Rightarrow d\left(m+n\right)\ge d^2\) hay \(a+b\ge d^2\)
\(\frac{a}{b}=\frac{49}{56}=\frac{7}{8}\)
ƯCLN(a ; b) = 12 chứng tỏ ta đã chia cả tử và mẫu của phân số \(\frac{a}{b}\) cho 12 để \(\frac{a}{b}\) rút gọn thành \(\frac{7}{8}\)
Vậy a = 7 . 12 = 84 ; b = 8 . 12 = 96