Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 quan trong là đoán dấu đẳng thức.
1/ Có: \(36=\left(3+2+1\right)\left(a^2+b^2+c^2\right)\ge\left(\sqrt{3}a+\sqrt{2}b+c\right)^2\)
\(\therefore\sqrt{3}a+\sqrt{2}b+c\le6\)
\(\frac{1}{3}\left(\frac{a}{bc}+\frac{3b}{2ca}\right)+\frac{3}{2}\left(\frac{b}{ca}+\frac{2c}{ab}\right)+2\left(\frac{c}{ab}+\frac{a}{3bc}\right)\)
\(\ge\frac{\sqrt{6}}{3c}+\frac{3\sqrt{2}}{a}+\frac{4\sqrt{3}}{3b}\)
\(=\frac{\left(\frac{\sqrt{6}}{3}\right)}{c}+\frac{\left(3\sqrt{6}\right)}{\sqrt{3}a}+\frac{\left(\frac{4\sqrt{6}}{3}\right)}{\sqrt{2}b}\)
\(\ge\frac{\left(\sqrt{\frac{\sqrt{6}}{3}}+\sqrt{3\sqrt{6}}+\sqrt{\frac{4\sqrt{6}}{3}}\right)^2}{\sqrt{3}a+\sqrt{2}b+c}\ge2\sqrt{6}\)
Đẳng thức xảy ra khi \(a=\sqrt{3},b=\sqrt{2},c=1\)
Ta có: \(\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2yx}+\frac{z^4}{zx+2zy}\)
Áp dụng BĐT Cauchy Schwarz, ta có:
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2yx}+\frac{z^4}{zx+2zy}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
=> ĐPCM
Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{\sqrt{3}}\)
Áp dụng BĐT Cosi cho 2 số dương, ta có:
\(\frac{9x^3}{y+2z}+x\left(y+2z\right)\ge6x^2;\frac{9y^3}{z+2x}+y\left(z+2x\right)\ge6y^2;\frac{9z^3}{x+2y}+z\left(x+2y\right)\ge6z^3\)
Lại có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)
Do đó \(\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}+3\left(xy+yz+zx\right)\ge6\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}\ge6\left(x^2+y^2+z^2\right)-3\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{\sqrt{3}}\)
Ta có \(VT=\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}\)
Lại có \(x^2\left(1-x^2\right)^2=\frac{2x^2\left(1-x^2\right)\left(1-x^2\right)}{2}\le\frac{\left(2x^2+1-x^2+1-x^2\right)^3}{54}=\frac{4}{27}\)
\(\Leftrightarrow\) \(x\left(1-x^2\right)\le\frac{2}{3\sqrt{3}}\) \(\Leftrightarrow\) \(\frac{1}{x\left(1-x^2\right)}\ge\frac{3\sqrt{3}}{2}\) \(\Leftrightarrow\) \(\frac{x}{\left(1-x^2\right)}\ge\frac{3\sqrt{3}}{2}x^2\) (1)
Tương tự cho \(\frac{y}{\left(1-y^2\right)}\ge\frac{3\sqrt{3}}{2}y^2\) (2) và \(\frac{z}{\left(1-z^2\right)}\ge\frac{3\sqrt{3}}{2}z^2\) (3)
Cộng vế theo vế ta được \(VT=\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}\ge\frac{3\sqrt{3}}{2}\left(x^2+y^2+z^2\right)=\frac{3\sqrt{3}}{2}\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{\sqrt{3}}{3}\)
\(\Sigma\sqrt[3]{x^3+y^3+2z^3}\ge\Sigma\sqrt[3]{\frac{\left(x^2+y^2+2z^2\right)^2}{x+y+2z}}\ge\Sigma\sqrt[3]{\frac{\frac{\left(x+y+2z\right)^4}{16}}{x+y+2z}}=\Sigma\frac{x+y+2z}{2\sqrt[3]{2}}\ge2\)
Đặt \(a=\sqrt{2x-3}\) ; \(b=\sqrt{y-2}\) ; \(c=\sqrt{3z-1}\) (\(a,b,c>0\))
Ta có : \(\frac{1}{a}+\frac{4}{b}+\frac{16}{c}+a+b+c=14\)
\(\Leftrightarrow\left(\sqrt{2x-3}+\frac{1}{\sqrt{2x-3}}-2\right)+\left(\sqrt{y-2}+\frac{4}{\sqrt{y-2}}-4\right)+\left(\sqrt{3z-1}+\frac{16}{\sqrt{3z-1}}-8\right)=0\)
\(\Leftrightarrow\left[\frac{\left(2x-3\right)-2\sqrt{2x-3}+1}{\sqrt{2x-3}}\right]+\left[\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}\right]+\left[\frac{\left(3z-1\right)-8\sqrt{3z-1}+16}{\sqrt{3z-1}}\right]=0\)
\(\Leftrightarrow\frac{\left(\sqrt{2x-3}-1\right)^2}{\sqrt{2x-3}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{3z-1}-4\right)^2}{\sqrt{3z-1}}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2x-3}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{3z-1}-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}}}\)(TMĐK)
Vậy : \(\left(x;y;z\right)=\left(2;6;\frac{17}{3}\right)\)