K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2021

1.ta có: 8p-1 là số nguyên tố (đề bài)

8p luôn luôn là hợp số 

ta có: (8p-1)8p(8p+1) chia hết cho 3 

từ cả 3 điều kiện trên ta có: 8p+1 chia hết cho 3 suy ra 8p+1 là hs

6 tháng 4 2016

Bài này cũng tương tự Chào anh hung t, đúng là 3 số anh xét là gần nhất... 
Hic ;(( sao nó lại không nằm trong suy nghĩ đầu tiên??? 
------------------- 
* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa 

* Xét: p # 3 
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3 
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3 

Vậy: 
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3 
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3 
=> 8p+1 là hợp số 
---------- 
Cách khác: 
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1) 
xét 3 số nguyên liên tiếp: p-1, p, p+1 
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên) 
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3

7 tháng 4 2016

Đầu bài thầy cho sai hay sao ý !

Câu 1: 

a: p=3 thì 3+2=5 và 3+10=13(nhận)

p=3k+1 thì p+2=3k+3(loại)

p=3k+2 thì p+10=3k+12(loại)

b: p=3 thì p+10=13 và p+20=23(nhận)

p=3k+1 thì p+20=3k+21(loại)

p=3k+2 thì p+10=3k+12(loại)

2.

p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

6 tháng 7 2015

\(p=3\)