Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta viết phương trình về dạng: \(2x^2-\left(2y-1\right)x+\left(2y^2+y-10\right)=0\)
Coi đây là phương trình bậc 2 theo ẩn x thì \(\Delta_x=\left(2y-1\right)^2-8\left(2y^2+y-10\right)=-12y^2-12y+81\)
Điều kiện để phương trình có nghiệm là \(\Delta_x\ge0\)hay \(-12y^2-12y+81\ge0\)\(\Leftrightarrow\frac{-1-2\sqrt{7}}{2}\le y\le\frac{-1+2\sqrt{7}}{2}\)mà y nguyên nên \(-3\le y\le2\)
Lập bảng:
\(y\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) |
\(x\) | \(-1\) | \(\varnothing\) | \(-3\) | \(2\) | \(\varnothing\) | \(0\) |
Vậy phương trình có 4 cặp nghiệm nguyên \(\left(x,y\right)=\left\{\left(2,0\right);\left(0,2\right);\left(-1,-3\right);\left(-3;-1\right)\right\}\)
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
x^2 +5y^2 -4xy +2x +4 =0
x^2 +4y^2 -4xy +y^2 +4y+4 +2x -4y =0
(x -2y)^2 +2(x-2y)+(y+2)^2 =0
(x-2y+1)^2 +(y+2)^2 =1
do x,y nguyên nên x-2y+1; y+2 nguyên
mà (x-2y+1)^2 ;(y+2)^2 lơn hơn hoặc bằng 0 với mọi x,y
nên ta có 2TH
TH1: (x-2y+1)^2 =1 ;(y+2)^2 =0
TH2: (x-2y+1)^2 =0 ;(y+2)^2 =1
bạn tự giải doạn cuối nhé
k cho mình nhé
Ta có :
\(2x^2+y^2-6x+2xy-2y+5=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y-1\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-1\\x=2\end{cases}}\)
\(x^2-2xy+2y^2-2x+6y+5=0\)
\(\Leftrightarrow\)\(x^2-2x\left(y+1\right)+\left(y^2+2y+1\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\)\(x^2-2x\left(y+1\right)+\left(y+1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\)\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-y-1=0\\y+2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)
Trung Nguyen tham khảo nha:
\(PT\Leftrightarrow x^2+1\)vì x2 là số chính phương lẻ
\(\Rightarrow x^2=y^2+1\equiv1\)mod4. mà y nguyên tố
\(\Rightarrow y=2,x=3\)
\(2x^2+2y^2-2xy+y-x-10=0\)
\(\Leftrightarrow2x^2-x\left(2y+1\right)+2y^2+y-10=0\)
Coi pt trên là pt bậc 2 ẩn x
\(\Delta_x=\left(2y+1\right)^2-8\left(2y^2+y-10\right)\)
\(=4y^2+4y+1-16y^2-8y+80\)
\(=-12y^2-4y+81\)
Để pt có nghiệm nguyên thì \(\hept{\begin{cases}\Delta_x\ge0\\\Delta_x=k^2\left(k\inℕ^∗\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-12y^2-4y+81\ge0\\-12y^2-4y+81=k^2\end{cases}}\)
Giải nốt đi , đến đây dễ r