Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(2x-1\right)\left(x+3\right)-\left(x-2\right)\left(3x-4\right)+5x\)
\(=\left(2x^2+6x-x-3\right)-\left(3x^2-4x-6x+8\right)+5x\)
\(=\left(2x^2+5x-3\right)-\left(3x^2-10x+8\right)+5x\)
\(=2x^2+5x-3-3x^2+10x-8+5x\)
\(=x^2+20x-11\)
b) \(5x\left(2x^2-3x+1\right)-2x\left(x+1\right)\left(x-2\right)\)
\(=10x^3-15x^2+5x-2x\left(x^2-2x+x-2\right)\)
\(=10x^3-15x^2+5x-2x^3+4x^2-2x^2+4x\)
\(=8x^3-13x^2+9x\)
c) \(\left(3x+2\right)\left(x+1\right)-2x\left(x+3\right)-2x+1\)
\(=3x^2+3x+2x+2-2x^2-6x-2x+1\)
\(=x^2-3x+3\)
hơi dài, thôi chăm chỉ tí có sao :v =))
\(A=-x^3\left(3x-1\right)-x\left(1+3x^4\right)-x^2\left(x^2-x-2\right)\)
\(=-3x^4+x^3-x-3x^5-x^4+x^3+2x^2\)
\(=-4x^4+2x^3-x-3x^5+2x^2\)
\(B=-x^2\left(2x^2-2x-4\right)-2x\left(2-4x^4\right)-2x^3\left(2x-2\right)\)
\(=-2x^3+2x^3+4x^2-4x+8x^5-4x^4+4x^3\)
\(=4x^2-4x+8x^5-4x^4+4x^3\)
Ta có : \(A-B=-4x^4+2x^3-x-3x^5+2x^2-4x^2+4x-8x^5+4x^4-4x^3\)
\(=-2x^3+3x-11x^5-2x^2\)
Tương tự bn nhé, mk hơi bị đao phần đa thức khi qua kì thi nên hơi bị chậc lẫn một xíu =((
\(a,\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-3\right)^2=4\)
\(\Rightarrow x-3=\pm2\)
\(\hept{\begin{cases}x-3=2\Rightarrow x=5\\x-3=-2\Rightarrow x=1\end{cases}}\)
Vậy \(x=5\)hoặc \(x=1\)
\(b,x^2-2x=24\)
\(\Leftrightarrow x^2-2x+1-1=24\)
\(\Leftrightarrow\left(x-1\right)^2=24+1=25\)
\(\Leftrightarrow x-1=\pm5\)
\(\hept{\begin{cases}x-1=5\Rightarrow x=6\\x-1=-5\Rightarrow x=-4\end{cases}}\)
Vậy \(x=6\) hoặc \(x=-4\)
\(c,\left(2x+1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)
\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow10x+255=0\)
\(\Leftrightarrow10x=-255\)
\(\Leftrightarrow x=\frac{-51}{2}\)
\(d,\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
\(\Leftrightarrow x^3-27+x\left(2x-x^2+4-2x\right)=1\)
\(\Leftrightarrow x^3-27-x^3+4x=1\)
\(\Leftrightarrow4x-27=1\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=7\)
\(a)\)
\(\frac{1}{x+1}-\frac{x-1}{x}=\frac{3x+1}{x\left(x+1\right)}\)
\(\Leftrightarrow x-x^2+1=3x+1\)
\(\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(b)\)
\(\frac{\left(x+2\right)^2}{2x-3}-\frac{1}{1}=\frac{x^2+10}{2x-3}\)
\(\Leftrightarrow x^2+4x+4-2x-3=x^2+10\)
\(\Leftrightarrow x^2+2x+1=x^2+10\)
\(\Leftrightarrow2x-9=0\)
\(\Leftrightarrow2x=9\)
\(\Leftrightarrow x=\frac{2}{9}\)
a, (x-2)^2 - (x-3)(x+3)=6
x^2-4x+4-(x^2-9)=6
x^2-4x+4-x^2+9=6
(x^2-x^2)-4x+13=6
-4x=-7
x=1,75
b, 4(x-3)^2 - (2x-1)(2x+1)=10
4(x^2-6x+9)-(4x^2-1)=10
4x^2-24x+36-4x^2+1=10
-24x+37=10
x=9/8
c,(x-4)^2 - (x+2)(x-2)=6
x^2-8x+16-(x^2-4)=6
x^2-8x+16-x^2+4=6
-8x+20=6
x=7/4
d, 9(x+1)^2 - (3x-2)(3x+2)=10
9(x^2+2x+1)-(9x^2-4)=10
9x^2+18x+9-9x^2+4=10
18x+13=10
x=-1/6
\(a,\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(-4x+13=6\)
\(-4x=6-13\)
\(-4x=-7\)
\(x=\frac{-7}{-4}\)
\(x=\frac{7}{4}\)
Vậy \(x=\frac{7}{4}\)
\(b,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)
\(4x^2-24x+36-4x^2+1=10\)
\(-24x+37=10\)
\(x=\frac{9}{8}\)
Vậy \(x=\frac{9}{8}\)
\(c,\left(x-4\right)^2-\left(x+2\right)\left(x-2\right)=6\)
\(x^2-8x+16-\left(x^2-4\right)=6\)
\(x^2-8x+16-x^2+4=6\)
\(-8x+20=6\)
\(x=\frac{7}{4}\)
Vậy \(x=\frac{7}{4}\)
\(d,9\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)
\(9\left(x^2+2x+1\right)-\left(9x^2-4\right)=10\)
\(9x^2+18x+9-9x^2+4=10\)
\(18x+13=10\)
\(x=\frac{-1}{6}\)
Vậy \(x=\frac{-1}{6}\)
a, (x-1).(x-2).(x-3)
= (x2 - 2x - x + 2) . (x-3)
= (x2 - 3x + 2). (x-3)4
= x3 - 3x2 - 3x2 + 9x + 2x -6
= x3 - 6x2 + 11x -6
b) (x2 +x+1)(x2-1)(x2-x+1)
= (x4 - x2 + x3 - x+ x2 -1) . (x2 - x +1)
= (x4 + x3 -x -1) . (x2 - x +1)
= x6 - x5 + x4 + x5 - x4 + x3 - x2 + x -1
= x6 + x3 - x2 + x - 1
c) (2x-5)(4-3x)-(3x+11)(5-2x)-15(2x-5)
= (8x - 6x2 - 20 + 15x) - (15x-6x+55-22x) - 30x + 75
= 8x - 6x2 - 20 + 15x - 15x+6x-55+22x - 30x+75
= 6x-6x2 +55
d)(x2-2x+3)(3x-5)-(x2+x-1)(2x+7)
làm tương tự phần C
lưu ý trước dấu ngoặc là dấu trừ, khi phá ngoặc ra phải đổi dấu
a, 3x3 . 5x2 = 15x5
b, 2x . ( 3x2 + 2x ) = 6x3 + 4x2
c, -3xy . ( 2x + 5y ) = -6x2y +-15xy2
d, 3x2. ( 6 - x2 + 2x ) = 18x2 - 3x3 + 6x3
e, ( x + 2 ) . ( x + 3 ) = x2 + 5x + 6
i, ( x - 4 ) . ( x + 4 ) = x2 - 16
h, ( 1 - 2x ) . ( 3x + 2 ) = 2 - 6x2 - x
k, ( x - y ) . ( x + y ) = x2 - y2
t, ( 2x + 1 ) . ( 4x2 - 2x + 1 ) = 8x3 - 1
a, 3x3 . 5x2 = 15x5
b, 2x . ( 3x2 + 2x ) = 6x3 + 4x2
c, -3xy . ( 2x + 5y ) = -6x2y +-15xy2
d, 3x2. ( 6 - x2 + 2x ) = 18x2 - 3x3 + 6x3
e, ( x + 2 ) . ( x + 3 ) = x2 + 5x + 6
i, ( x - 4 ) . ( x + 4 ) = x2 - 16
h, ( 1 - 2x ) . ( 3x + 2 ) = 2 - 6x2 - x
k, ( x - y ) . ( x + y ) = x2 - y2
t, ( 2x + 1 ) . ( 4x2 - 2x + 1 ) = 8x3 - 1
hello
ủa dễ mà.