Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt (a,b)=d => a=md; b=nd với m,n thuộc N*; (m,n)=1 và [a,b]=dmn.
a+2b=48 => d(m+2n)=48 (1)
(a,b)+3[a,b] =>d(1+3mn)=114 (2)
=> Từ (1); (2) => d thuộc ƯC(48,114) mà ƯCLN(48,114)=6
=>d thuộc Ư(6)={1;2;3;6} lần lượt thay các giá trị của d vào (1) và (2) ta thấy chỉ có d=6 là thỏa mãn.
Lập bảng:
m | n | a | b |
2 | 3 | 12 | 18 |
6 | 1 | 36 | 6 |
Vậy 2 số cần tìm là: a=12 và b=18; a=36 và b=6.
Ta có : a + 2b = 48 và ( a,b ) + 3[ a,b] = 114
\(114⋮3;3\left[a,b\right]⋮3\Rightarrow\left(a,b\right)⋮3\)và a + 2b = 48=> \(a⋮2\Rightarrow a⋮6\)
=> \(a\in\left\{0;6;12;18;24;30;36;42\right\}\)
Ta có bảng :
| |||||||||||||||||||||||||||||||||||||||||
vì ƯCLN(a;b) = 6
=>a = 6m
b = 6n
=> a x b = 6m x 6n = 6(m x n )=720
=> m x n = 120
rồi cậu tìm ra các cặp 2 số mà cả 2 số đó nhân với nhau bằng 120 rồi cậu nhân 2 số đó với 6 sẽ ra a và b
phần b) làm tương tự nhưng để tìm ƯCLN cậu hãy dựa vào tính chất sau :
(a x b) = BCNN(a;b) x ƯCLN(a;b)
Với \(a,b\inℕ\), \(ƯCLN\left(a,b\right)+3\cdot BCNN\left(a,b\right)=14\)
\(a+2b=48\) (2), từ đó, ta có: \(0\le a\le48,\text{ }0\le b\le24,\text{ }ƯCLN\left(a,b\right)\le14,\text{ }BCNN\left(a,b\right)\le4\)
Vì 2b là số chẵn, 48 là số chẵn nên a cũng phải là số chẵn, nên \(BCNN\left(a,b\right)\) cũng là số chẵn.
Với \(a=0,\text{ }b\ne0\), ta có: \(b=24\), \(ƯCLN\left(a,b\right)=24\) (không tmđk), \(BCNN\left(a,b\right)=0\)
Với \(a\ne0,\text{ }b=0\), ta có: \(a=48\), \(ƯCLN\left(a,b\right)=48\) (không tmđk), \(BCNN\left(a,b\right)=0\)
Với \(a,b\ne0\), ta có: \(2\le a\le46,\text{ }1\le b\le23\)
\(1\leƯCLN\left(a,b\right)\le14,\text{ }2,\text{ }BCNN\left(a,b\right)\in\left\{2;4\right\}\)
TH1: Nếu \(BCNN\left(a,b\right)=2\) thì \(ƯCLN\left(a,b\right)=14-2\cdot3=8\)
\(BCNN\left(a,b\right)=2\) phải có ít nhất 1 số bằng 2, và số còn lại phải bằng \(Ư\left(2\right)=\left\{1;2\right\}\)
Mà \(ƯCLN\left(a,b\right)=8\) thì số 2 không chia hết cho 8
Nên trường hợp này \(a,b\in\varnothing\)
TH2: Nếu \(BCNN\left(a,b\right)=4\) thì \(ƯCLN\left(a,b\right)=14-4\cdot3=2\)
\(\Rightarrow a,b⋮2\)
\(BCNN\left(a,b\right)=4\) phải có ít nhất 1 số bằng 4, và số còn lại phải bằng \(Ư\left(4\right)=\left\{1;2;4\right\}\)
* Với \(a=4\), ta có: \(2b=44\Leftrightarrow b=22\) (không tmđk)
* Với \(b=4\), ta có: \(a=40\Leftrightarrow a=20\) (không tmđk)
Vậy trường hợp này \(a,b\in\varnothing\)
Vậy không thể tìm được a và b tự nhiên thoả mãn các điều kiện trên.