\(\in\) Z sao cho :

a) ( a - 2 ) . ( a + 3 ) < 0

b) ( a - 4  ) . (...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2016

a) (a-2).(a+3)<0

=> TH1  a-2>0, a+3<0 => không có a thỏa mãn đề bài

=> th2    a-2<0, a+3>0 => a=0;a=1 

vậy a=0, a=1

b) (a-4).(a+1)>0

=> TH1 a-4 lớn hơn hoặc bằng 0, a+1 lớn hơn hoặc bằng 0

vậy a=0,1,2,3,4 

=> TH2(a-4)<0; a+1<0 

=> a= là số nguyên âm bất khì

vậy a= tất cả các số nguyên âm và 0.1.2.3.4

c) (/x/+2).(4-a)>0

=> TH1 /x/-2 >0; 4-a>0 

do /x/ >0 nên a=3

=> TH2 /x/+2 <0; 4-a<0 => không có gt a thỏa mãn

vậy a=3

2 tháng 6 2016

Bài 3\(x=-2002\):

a.

\(\left|x\right|=2002\)

\(x=\pm2002\)

Vậy \(x=2002\) hoặc \(x=-2002\)

b.

\(\left|x\right|=0\)

\(x=0\)

c.

\(\left|x\right|< 3\)

\(\left|x\right|\in\left\{0;1;2\right\}\)

\(x\in\left\{-2;-2;0;1;2\right\}\)

Chúc bạn học tốtok

2 tháng 6 2016

3. Tìm x biết 

a. |x|=2002

=> x = 2002 hoặc -2002

b, |x|=0

=> x = 0

c.|x|<3

=> |x| = {0; 1; 2}

x = {0; 1; -1; 2; -2}

d.|x|>và x<-70

=> x < -70

x = {-71; -72, -73; -74; ...}

16 tháng 8 2020

TA CÓ:   \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)

=>   \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\left(1\right)\)

TA LUÔN CÓ:   \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

=>   \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

TỪ (1) VÀ (2) =>   \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\) 

VẬY TA CÓ ĐPCM.

16 tháng 8 2020

Cho  \(B=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Cm B>1
Ta có \(\frac{a}{a+b+c}< \frac{a}{a+b}\)(vì phân số cùng tử thì mẫu số nào lớn hơn thì phân số đó bé hơn)
CM tương tự ta có\(\frac{b}{a+b+c}< \frac{b}{b+c}\)

                             \(\frac{c}{a+b+c}< \frac{c}{c+a}\)

Cộng vế theo vế ta có \(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

                                       1 < B

CM B<2
Ta có \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)( Vì ta có công thức \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}\)

Cm tương tự như phần trên rồi cộng vế theo vế ta có B<2

                                      

                                       
 

3 tháng 6 2017

1/ 

a/ Sai . Sửa : a \(\in N\Rightarrow a\ge0\)                                            b/ Đúng 

c/ Sai . Sửa : \(a\in N\)và b < a \(\Rightarrow b\)<0                               c/ Sai . Sửa :a\(\in N\) và b\(\le0\Rightarrow\)a\(\ge b\)

2/

TH1 : a<b<0           TH2 : a<0<b                     TH3 : 0<a<b

Vậy có tất cả 3 trường hợp về thứ tự của 3 số a , b, 0

3/ 

a/ Đúng

b/ Sai . Sửa : Mọi a,b\(\in Z\); |a| > |b| thì:

   - Với a,b đều là số nguyên dương thì a > b

   - Với a ,b đều là số nguyên âm thì a < b

   - Với a âm , b dương thì  a < b

   -Với a dương , b âm thì a > b

c/ Đúng