Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số thứ 1 là a
số thứ 2 là b
vì ƯCLN của chúng bằng 18.=>a chia hết cho 18;b chia hết cho 18
=>a+b=162
=>162 chia hết cho 18
=>tổng số phần bằng nhau là:
162:18=9
=>a:18=c ; b:18=d
=>c+d=9
........
Tìm 2 số có tổng là 162 và UCLN là 18.
x+y=162
x=18m; y=18n => m+n=9 và m, n nguyên tố cùng nhau => xảy ra 3 trường hợp
1. m=4; n=5 hoặc ngược lại
=> x=18*4=72 và y=18*5=90 hoặc ngược lại
2. m=1 và n=8 hoặc ngược lại
=> x=18 và y=144 hoặc ngược lại
3. m=2 và n=7 hoặc ngược lại
=> x=36 và y=126 hoặc ngược lại
Gọi hai số đó là a,b (giả sử a < b)
Theo đề bài,ta có: a + b = 162; (a;b) = 18
Đặt a = 18m ; b = 18n (m<n do gt a < b)
Theo đề bài,ta có: \(a+b=18m+18n=18\left(m+n\right)=162\)
\(\Leftrightarrow m+n=\frac{162}{18}=9\)
Ta có bảng sau:
m | 1 | 2 | 4 |
n | 8 | 7 | 5 |
a | 18 | 36 | 72 |
b | 144 | 126 | 90 |
Vậy a;b = (18;144) ; (36;126) ; (72;92) và các hoán vị của nó.
Giả sử 2 số đó là a và b
Vì ƯCLN(a;b)=18=> a=18a' b=18b' ƯCLN(a';b')=1
Ta có: 18a'+18b'=162
a'+b' =162:18
a'+b' = 9.
Vì ƯCLN(a';b')=1, ta có bảng sau:
a' | 1 | 2 | 4 |
b' | 8 | 7 | 5 |
=>
a | 18 | 36 | 72 |
b | 144 | 126 | 90 |
Vậy a= 18;36 hoặc 72
b= 144;126 hoặc 90
Gọi 2 số cần tìm là x và y
Ta có UCLN(x,y)=18{x=18.m;y=18.n;(m,n)=1
Theo bài ra: x+y=162
Nên: 18m+18n=162
<=> 18.(m+n) = 162
<=> m+n = 162:18
<=> m+n = 9
Vì m,n là 2 số nguyên tố cùng nhau và m+n=9.
Do đó: m=1;n=8 => x=18;y=144 và ngược lại
m=2;n=7 => (phần sau tự làm nhé, dễ rồi mà)
.........
ƯCLN = 18 \(\left(m,n\right)=1\)
\(\Rightarrow a⋮18=a=18m\) \(\Rightarrow18m+18n=162\)
\(\Rightarrow b⋮18\Rightarrow a=18n\) \(=18\left(m+n\right)=162\)
\(a+b=162\) \(m+n=9\)
ta có :
\(m=1\Rightarrow n=8\Rightarrow a=18\Rightarrow b=144\)
\(m=2\Rightarrow n=7\Rightarrow a=36\Rightarrow b=126\)
\(m=8\Rightarrow n=1\Rightarrow a=144\Rightarrow b=18\)
\(m=7\Rightarrow n=2\Rightarrow a=126\Rightarrow b=36\)
gọi 2 số là a và b.
Có: a=18. x ; b= 18.y
=> (x;y)=1 : giải thích tí nha (x;y) là ƯCLN của x;y
=> a+b = 18x +18y
=> 162 = 18(x+y)
=> x+y = 162 :18 =9.
Ta chọn x;y tùy ý sao cho chúng có tổng bằng 9 và đồng thời nguyên tố cùng nhau.
gọi 2 số cần tìm là a và b
=> a+b=162 bằng với 18.x+18.y=162
=> 18.(x+y)= 162. Vậy x+y=9
vậy ta được : ( x,y ; a;b có thể là các số sao tương ứng theo cột)