Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là A
Theo bài ra ta có:
A = 7.A + 3 = 17.B + 12 = 23.C + 7
Mặt khác : A + 39 = 7.A + 3 + 39 = 17.B + 12 + 39 = 23.C + 7 + 39
= 7.( a + 6 ) = 17.(b + 3 ) = 23 (c + 2 )
Như vậy A + 39 đồng thời chia hết cho 7,17 và 23
Nhưng 7,17 và 23 đôi một nguyên tố cùng nhau nên ( A + 39 )7.17.23 nên ( A + 39 ) 2737
Suy ra A + 39 = 2737.k suy ra A = 2737.k - 39 = 2737.( k - 1 ) + 2698
Do 2698 < 2737 nên 2698 là số dư của phép chia A cho 2737
Chúc bạn học tốt!
gọi số dã cho là A, theo đề bài ta có:
A = 7.a + 3 = 17.b + 12 = 23.c + 7
mặt khác: A + 39 = 7.a + 3 + 39 = 17.b + 12 + 39 = 23.c + 7 + 39
= 7.(a + 6) = 17.(b + 3) = 23.(c + 2)
như vậy A+39 đồng thời chia hết cho 7,17 và 23.
nhưng 7,17 và 23 đồng thời là 3 số nguyên tố cùng nhau nên : (A + 39) 7.17.23 hay (A+39) 2737
Suy ra A+39 = 2737.k suy ra A = 2737.k - 39 = 2737.(k-1) + 2698
Do 2698 < 2737 nên 2698 là số dư của phép chia số A cho 2737
Theo đầu bài, ta có:
A=7.a+4
=17.b+3
=23.c+11 (a,b,c ∈∈ N)
nếu ta thêm 150 vào số đã cho thì ta lần lượt có:
A+150=7.a+4+150=7.a+7.22=7.(a+22)
=17.b+3+150=17.b+17.9=17.(b+9)
=23.c+11+150=23.c+23.7=23.(c+7)
như vậy A+150 đồng thời chia hết cho 7,17 và 23. nhưng 7, 17 và 23 là ba sô đôi một nguyên tố cùng nhau, suy ra A+150 chia hết cho 7.17.13=2737
vậy A+150=2737k (k=1;2;3;4...)
suy ra: A=2737k-150=2737k-2737+2587=2737(k-1)+2587=2737k'+2587
do 2587<2737 nên 2587 là số dư trong phép chia số đã cho A cho 2737
Gọi số đã cho là A, theo đề bài ta có:
A = 7.a + 3 = 17.b + 12 = 23.c + 7
Mặt khác: A + 39 = 7.a + 3 + 39 = 17.b + 12 + 39 = 23.c + 7 + 39
= 7.(a + 6) = 17.(b + 3) = 23.(c + 2)
Như vậy A + 39 đồng thời chia hết cho 7,17 và 23.
Nhưng 7,17 và 23 đồng thời là 3 số nguyên tố cùng nhau nên : (A + 39) 7. 17 . 23 hay ( A + 39 ) 2737
Suy ra A + 39 = 2737. k suy ra A = 2737. k - 39 = 2737.( k - 1) + 2698
Do 2698 < 2737 nên 2698 là số dư của phép chia số A cho 2737
GỌI SỐ TỰ NHIÊN CHIA CHO 7 DƯ 3, CHO 17 DƯ 12, CHO 23 DƯ 7 LÀ a
THEO BÀI RA, TA CÓ: \(a=7q+3=17p+12=23y+7\)( TRONG ĐÓ \(q,p,y\)LÀ THƯƠNG CỦA CÁC PHÉP CHIA)
\(\Rightarrow a+39=7q+42=7\cdot\left(q+6\right)\left(1\right)\)
\(a+39=17p+51=17\cdot\left(p+3\right)\left(2\right)\)
\(a+39=23y+46=23\cdot\left(y+2\right)\left(3\right)\)
TỪ\(\left(1\right),\left(2\right)\&\left(3\right)\Rightarrow a+39\in BC\left(7;17;23\right)\)
TA CÓ: \(7=7;17=17;23=23\)
\(\Rightarrow BCNN\left(7;17;23\right)=7\cdot17\cdot23=2737\)
DO ĐÓ: \(a+39=2737k\left(k\in N\right)\)
\(\Leftrightarrow a=2737k-39\)
\(\Leftrightarrow a=2737\cdot\left(k-1\right)-2698\)
VẬY PHÉP CHIA a CHO 2737 CÓ SỐ DƯ LÀ 2698