Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}\)
\(=\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.\left(2.3\right)^9}{\left(2^2\right)^6.3^{12}+\left(2.3\right)^{11}}\)
\(=\frac{2^{12}.3^{10}+2^3.3.5.2^9.3^9}{2^{12}.3^{12}+2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{11}.3^{11}\left(2.3+1\right)}\)
\(=\frac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}.7}=\frac{2.6}{3.7}=\frac{4}{7}\)
\(B=\frac{0,6-\frac{3}{11}+\frac{3}{13}}{1,4-\frac{7}{11}+\frac{7}{13}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\)
\(B=\frac{\frac{3}{5}-\frac{3}{11}+\frac{3}{13}}{\frac{7}{5}-\frac{7}{11}+\frac{7}{13}}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\)
\(B=\frac{3\left(\frac{1}{5}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{5}-\frac{1}{11}+\frac{1}{13}\right)}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{7\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{10}\right)}\)
\(B=\frac{3}{5}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{7.\frac{1}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\)
\(B=\frac{3}{5}-\frac{2}{7}=\frac{11}{35}\)
Ta có: \(A=\frac{\frac{3}{11}+1-\frac{3}{7}}{3+\frac{9}{11}-\frac{9}{7}}-\frac{\frac{1}{3}+0,25-\frac{1}{5}+0,125}{\frac{7}{6}+\frac{7}{8}-0,7+\frac{7}{16}}\)
\(=\frac{3\left(\frac{1}{11}+\frac{1}{3}-\frac{1}{7}\right)}{9\left(\frac{1}{3}+\frac{1}{11}-\frac{1}{7}\right)}-\frac{2\left(\frac{1}{6}+\frac{1}{8}-\frac{1}{10}+\frac{1}{16}\right)}{7\left(\frac{1}{6}+\frac{1}{8}-\frac{1}{10}+\frac{1}{16}\right)}\)
\(=\frac{3}{9}-\frac{2}{7}=\frac{1}{3}-\frac{2}{7}=\frac{7}{21}-\frac{6}{21}=\frac{1}{21}\)
Vậy \(A=\frac{1}{21}\)
\(Q=2002:\left[\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}.\frac{-\frac{7}{6}+\frac{7}{8}-\frac{7}{10}}{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}\right]=2002:\left[\frac{2.\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}.\frac{-\frac{7}{2}.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}\right]=2002:\left[\frac{2}{7}.\frac{-7}{2}\right]=2002.\left(-1\right)=-2002\)
a) Biểu thức A có một số thập phân, ta nên đổi số này thành phân số.
\(A=\frac{-3}{8}.16\frac{8}{17}-0,375.7\frac{9}{17}\)
\(A=\frac{-3}{8}.16\frac{8}{17}-\frac{3}{8}.7\frac{9}{17}\\ =\frac{-3}{8}.\left(16\frac{8}{17}+7\frac{9}{17}\right)\\ =\frac{-3}{8}.\left(16+7+\frac{8}{17}+\frac{9}{17}\right)\\ =\frac{-3}{8}.24=-9\)
b) Ta đổi các số thập phân thành phân số
\(B=\frac{0,6-\frac{1}{3}+\frac{3}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\)
\(B=\frac{\frac{3}{5}-\frac{1}{3}+\frac{3}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\\ =\frac{3.\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7.\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}-\frac{2.\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{10}\right)}{7.\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{10}\right)}\)
Dễ nhận thấy \(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\ne0\) và \(\frac{1}{6}-\frac{1}{8}+\frac{1}{10}\ne0\) nên trong các phân số có tử và mẫu cùng chứa các thừa số khác 0 này ta có thể rút gọn được và đi đến kết quả:
\(B=\frac{3}{7}-\frac{2}{7}=\frac{1}{7}\)