Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x2yz + 4xy2z - 5x2yz + xy2z - xyz
= (2x2yz-5x2yz)+(4xy2z+xy2z)-xyz
= -3x2yz + 5xy2z - xyz
b) x3-5xy+3x3+xy-x2+\(\dfrac{1}{2}\)xy-x2
= (x3+3x3)+(xy-5xy+\(\dfrac{1}{2}\)xy)-(x2+x2)
= 4x3-\(\dfrac{7}{2}\)xy-2x2
a, \(2x^2yz+4xy^2z-10x^2yz+xy^2z-2xyz\)
\(=2x^2y+\left(4xy^2z+xy^2z\right)-10x^2yz-2xyz\)
\(=2x^2y+5xy^2z-10x^2yz-2xyz\)
b, \(x^3-5xy+3x^3+xy-x^2+\frac{1}{2}-x^2\)
\(=\left(x^3+3x^3\right)+\left(-5xy+xy\right)+\left(-x^2-x^2\right)+\frac{1}{2}\)
\(=4x^3-4xy-2x^2+\frac{1}{2}\)
c, \(3x^2y^2z^2+x^2y^2z^2=4x^2y^2z^2\)
Bài 1 :
a) 2x2yz + 4xy2z - 10x2yz + xy2z - 2xyz
= ( 2 - 10 )x2yz + ( 4 + 1 )xy2z - 2xyz
= -8x2yz + 5xy2z - 2xyz
b) 3x2y2z2 + x2y2z2 = ( 3 + 1 )x2y2z2 = 4x2y2z2
Bài 2.
a) 15x4 + 7x4 + ( -20x )x2 = ( 15 + 7 )x4 - 20xx2 = 22x4 - 20x3
Thay x = -1 vào đa thức ta có :
22 . ( -1 )4 - 20 . ( -1 )3
= 22 . 1 - 20 . ( -1 )
= 22 - ( -20 )
= 22 + 20
= 42
Vậy giá trị của đa thức = 42 khi x = -1
b) 23x3y3 + 17x3y3 + ( -50x3 )y3 = 23x3y3 + 17x3y3 - 50x3y3 = ( 23 + 17 - 50)x3y3 = -10x3y3
Thay x = 1 ; y = -1 vào đơn thức ta có :
-10 . 13 . ( -1 )3
= -10 . 1 . ( -1 )
= 10
Nhóm 1:-5x\(^2\)yz;\(\dfrac{2}{3}\)x\(^2\)yz
Nhóm 2:3xy\(^2\)z;-\(\dfrac{2}{3}\)xy\(^2\)z
Nhóm 3:10x\(^2\)y\(^2\)z;\(\dfrac{5}{7}\)x\(^2\)y\(^2\)z
a) \(-\dfrac{2}{3}xy^2z.\left(-3x^2y\right)^2\)
= \(-\dfrac{2}{3}xy^2z.9x^4y^2\)
= \(-6x^5y^4z\)
b) \(x^2yz.\left(2xy\right)^2z\)
= \(x^2yz.4x^2y^2z\)
= \(4x^4y^3z^2\)
\(3xy^2z+2x^2yz-4xy^2z-5x^2yz-2xyz=-xy^2z-3x^2yz-2xyz=-xyz\left(y+3x+2\right)\)
\(3xy^2z+2x^2yz-4xy^2z-5x^2yz-2xyz\)
\(=-2xyz+\left(2x^2yz-5x^2yz\right)+\left(3xy^2z-4xy^2z\right)\)
\(=-2xyz-3x^2yz-xy^2z\)