Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, = (x+3y)^2
b, = (x-1/2)(x+1/2)
c, = (x-5)^2
d, = (2x+3y)(4x^2-6xy+9y^2)
e, = (x^3-y)^2
f,= (x+3y)^3
Phân tích đa thức thành nhân tử:
a) Ta có: \(3x^2-8xy+5y^2\)
\(=3x^2-3xy-5xy+5y^2\)
\(=3x\left(x-y\right)-5y\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5y\right)\)
b) Ta có: \(8xy^3+x\left(x-y\right)^3\)
\(=x\left[8y^3-\left(x-y\right)^3\right]\)
\(=x\left[2y-\left(x-y\right)\right]\left[4y^2+2y\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=x\left(2y-x+y\right)\left(4y^2+2xy-2y^2+x^2-2xy+y^2\right)\)
\(=x\left(3y-x\right)\left(3y^2+x^2\right)\)
c) Ta có: \(2x\left(x-3\right)-x+3\)
\(=2x\left(x-3\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(2x-1\right)\)
d) Ta có: \(x^4-4x^3+4x^2\)
\(=x^2\left(x^2-4x+4\right)\)
\(=x^2\cdot\left(x-2\right)^2\)
e) Ta có: \(4x^2+4xy-4z^2+y^2-4z-1\)
\(=\left(4x^2+4xy+y^2\right)-\left(4z^2+4z+1\right)\)
\(=\left(2x+y\right)^2-\left(2z+1\right)^2\)
\(=\left(2x+y-2z-1\right)\left(2x+y+2z+1\right)\)
f) Ta có: \(x^2-2xy+y^2-x+y-6\)
\(=\left(x-y\right)^2-\left(x-y\right)-6\)
\(=\left(x-y\right)^2-3\left(x-y\right)+2\left(x-y\right)-6\)
\(=\left(x-y\right)\left(x-y-3\right)+2\left(x-y-3\right)\)
\(=\left(x-y-3\right)\left(x-y+2\right)\)
g) Ta có: \(x^2\left(x+3\right)^2-\left(x+3\right)^2-\left(x^2-1\right)\)
\(=x^2\left(x^2+6x+9\right)-\left(x^2+6x+9\right)-x^2+1\)
\(=\left(x^2-6x+9\right)\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-6x+9-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2-6x+8\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-4\right)\)
Bài 1:
F=(x-1)3-x2(x-3)
=x3-3x2+3x-1-x3-3x2
=(x3-x3)-(3x2-3x2)+3x-1
=3x-1
Bài 2:
a)(x+3)2=(x-2)(x+4)
<=>x2+6x+9=x2+2x-8
<=>4x=-17
<=>x=-17/4
b)(x+4)2=2x2+16
<=>x2+8x+16=2x2+16
<=>8x=x2
<=>8x-x2=0
<=>x(8-x)=0
<=>x=0 hoặc x=8
Bài 1:
F=(x-1)3-x2(x-3)=x3-3x2+3x-1-x3+3x2=3x-1
Bài 2:
a, <=>(x+3)2-(x-2)(x-4)=0
<=>x^2+6x+9-x^2-4x+2x+8=0
<=>4x+17=0
<=>x=-4,25
b,<=>(x+4)2-2x2-16=0
<=>x2+8x+16-2x2-16=0
<=>8x-x2=0
<=>x(8-x)=0
<=>\(\orbr{\begin{cases}x=0\\x=8\end{cases}}\)
Bài 3:(đợi một xíu)
Sử dụng định lý Bezout:
a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
b/ \(g\left(x\right)=0\Rightarrow x=-1\)
\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)
Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a
c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)
\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)
Thay \(x=1\Rightarrow a+b=-2\)
\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)
d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)
Ta sẽ chứng minh \(f\left(x\right)=\left[\frac{n\left(n+1\right)}{2}\right]^2\)(1).
\(f\left(1\right)=1=\left[\frac{1\left(1+1\right)}{2}\right]^2\)(đúng)
Giả sử (1) đúng với \(x=k\ge1\), tức là: \(f\left(k\right)=\left[\frac{k\left(k+1\right)}{2}\right]^2\).
Ta sẽ chứng minh (1) đúng với \(x=k+1\), tức là \(f\left(k+1\right)=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\).
Ta có: \(f\left(k+1\right)=1^3+2^3+...+k^3+\left(k+1\right)^3=\left[\frac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3\)
\(=\left(k+1\right)^2.\left[\left(\frac{k}{2}\right)^2+k+1\right]=\left(k+1\right)^2.\left(\frac{k^2+4k+4}{4}\right)=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\).
Do đó (1) đúng với \(x=k+1\).
Vậy \(f\left(x\right)=\left[\frac{n\left(n+1\right)}{2}\right]^2\).
Ta có:\(f\left(x\right)=1^3+2^3+3^3+...+x^3\)
\(=\left(1^3+x^3\right)+\left[2^3+\left(x-1\right)^3\right]+\left[3^3+\left(x-2\right)^3\right]+...+\left\{n^3+\left[x-\left(n-1\right)\right]^3\right\}\)
\(=\left(x+1\right)\left(1-x+x^2\right)+\left(x+1\right)\left[4-2\left(x-1\right)+\left(x-1\right)^2\right]+\)\(\left(x+1\right)\left[9-3\left(x-2\right)+\left(x-2\right)^2\right]+...+\left(x+1\right)\left[n^2-n\left(x-n+1\right)+\left(x-n+1\right)^2\right]\)
\(=\left(x+1\right)\left(24-12x+3x^2+...+3n^2-3xn+2x-3n+1+x^2\right)\)