Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M N E F I
Vì: FBM=FAM=45 độ nên BFMA là tứ giác nội tiếp
tương tự có đpcm
b, ta có:
MFN=DAB=90
NEM=BCD=90
=> nội tiếp
c, theo câu b ta có:
MNB=BEC=BNC nên: NB là phân giác góc INC
thấy ngay H là trực tâm tam giác BMN nên: BI vuông góc MN
do đó áp dụng tính chất đường phân giác ta được BI=BC=a.
Chứng minh góc EBN = góc ECN = 450
=> Tứ giác BENC nội tiếp (đpcm)
cho tam giác ABC ( AB<AC) có ba góc nhọc nội tiếp đường tròn tâm (O) và D là hình chiếu của B trên AO sao cho D nằm giữa A và O. gọi M là trung điểm của BC, N là giao điểm của BD và AC, F là giao điểm của MD và AC, E là giao điểm thứ hai của BD với (O), H là giao điểm của BF và AD.
1/ chứng minh tứ giác BDOM nội tiếp và góc MOD + NAE=180.
2/ chứng minh DF //CE.
3/ chứng minh CA là tia phân giác của góc BCE
4/ Chứng minh HN vuông góc với AB
Xét ΔABD có AE/AB=AH/AD
nên EH//BD và EH=BD/2
Xet ΔCBD có CF/CB=CG/CD
nên FG//BD và FG=BD/2
=>EH//FG và EH=FG
Xét ΔBAC có BE/BA=BF/BC
nên EF//AC
=>EF vuông góc BD
=>EF vuông góc EH
=>EFGH là hình chữ nhật
=>E,F,G,H cùng thuộc 1 đường tròn
=>Bán kính là R=EG/2
a: Xét tứ giác BEDF có
BE//DF
BE=DF
Do đó: BEDF là hình bình hành
b: Ta có: BEDF là hình bình hành
nên Hai đường chéo BD và EF cắt nhau tại trung điểm của mỗi đường(1)
Ta có: ABCD là hình bình hành
nên Hai đường chéo BD và AC cắt nhau tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,BD,EF đồng quy
Trong tam giác ABD, có: \(\dfrac{MA}{MB}=\dfrac{QA}{QD}\) nên MQ//BD và \(\dfrac{QM}{BD}=\dfrac{AM}{AB}\).
CMTT, ta có: NP//BD và \(\dfrac{NP}{BD}=\dfrac{CP}{CD}\)
Nên MQ//NP. Hơn nữa vì \(\dfrac{AM}{AB}=\dfrac{CP}{CD}\) nên \(\dfrac{QM}{BD}=\dfrac{NP}{BD}\Rightarrow QM=NP\)
Do đó tứ giác MNPQ là hình bình hành.
\(\Rightarrow\) MP, NQ cắt nhau tại trung điểm I của mỗi đoạn.
Dựng các hình bình hành AMXE, ABYE, CPZE, CDTE.
Ta có \(\dfrac{MX}{PZ}=\dfrac{AE}{CE}=\dfrac{1}{2}=\dfrac{MI}{IP}\) nên theo định lý Thales thì X, I, Z thẳng hàng và \(\dfrac{IX}{IZ}=\dfrac{IM}{IP}=\dfrac{1}{2}\) hay I là trung điểm XZ
Tương tự như vậy, ta cũng có Y, F, T thẳng hàng và F là trung điểm YT.
Mặt khác, ta có \(\dfrac{EX}{XY}=\dfrac{MA}{MB}=\dfrac{PC}{PD}=\dfrac{ZE}{ZT}\) nên XZ//YT
\(\Rightarrow\dfrac{EZ}{ET}=\dfrac{XZ}{YT}=\dfrac{2IZ}{2FT}=\dfrac{IZ}{FT}\)
Từ đó theo định lý Thales suy ra được E, I, F thẳng hàng (đpcm).