Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tam giác vuông cân đó là ABC
Ta có:\(\frac{AB+AC}{2}=\sqrt{2}\Leftrightarrow\frac{2AC}{2}=\sqrt{2}.\)
\(\Rightarrow AB=AC=\sqrt{2}\)
Gọi H là trung điểm của BC
=> AH là đường trung tuyến của tam giác ABC vuông cân tại A
=> AH là đường cao của tam giác ABC vuông cân tại A
AH = \(\frac{BC}{2}\) = \(\frac{a}{2}\)
SABC = \(\frac{AH\times BC}{2}=\frac{\frac{a}{2}\times a}{2}=\frac{a^2}{2}\times2=a^2\)
Đặt độ dài 2 cạnh góc vuông của tam giác đó là a và b; độ dài cạnh huyền là c (a,b,c > 0)
Diện tích của tam giác đó là \(\frac{ab}{2}=14\)(cm2) \(\Rightarrow ab=28\Leftrightarrow2ab=56\)(1)
Áp dụng ĐL Pytago ta có: \(a^2+b^2=c^2=13^2=169\)(2)
(1) + (2) \(\Rightarrow a^2+2ab+b^2=56+169=225\Leftrightarrow\left(a+b\right)^2=225\)
\(\Leftrightarrow a+b=\sqrt{225}=15\)(cm). Vậy ...