\(\widehat{A}=90^0\), AB = a (cm), AC = b (cm), (a <b), trung tu...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

Với a = 4,15 (cm); b = 7,25 (cm), sử dụng máy tỉnh, ta tính được:

BC = 8,35 cm

BD = 3,04 cm

DC ≈ 5,31 cm

AM ≈ 4,18 cm

DM ≈ 1,14cm

5 tháng 5 2017

Ta có:

\(\widehat{ABC}=\widehat{ADC}\) và AD = BC = b = 7,25cm vì ABCD là hình bình hành.

Xét hai tam giác ADF và CBE ta có:

\(\widehat{ABC}=\widehat{ADC}\) (cmt)

AD = BC (cmt)

\(\widehat{DAF}=\widehat{BCE}\) (2 góc so le trong)

Vậy \(\Delta ADF=\Delta CBE\) (g-c-g).

=> AF = CE.

Cho AF = CE = x.

Áp dụng tính chất của đường phân giác BE trong tam giác ABC ta có:

\(\dfrac{AB}{BC}=\dfrac{AE}{CE}=\dfrac{AF+FE}{CE}\)

=> \(\dfrac{a}{b}=\dfrac{x+m}{x}=>x=\dfrac{mb}{a-b}\)= \(\dfrac{3,45.7,25}{12,5-7,25}=\dfrac{667}{140}\)

=> AC = \(2x+m=2.\dfrac{667}{140}+3,45=\dfrac{1817}{140}\approx12,98\)

Vậy AC \(\approx12,98\) cm.

13 tháng 3 2020

Trong ΔABC, ta có: AD là đường phân giác của (BAC)

Suy ra: \(\frac{DB}{DC}=\frac{AB}{AC}\)(tính chất đường phân giác)

Mà AB = 15 (cm); AC = 20 (cm)

Nên \(\frac{DB}{DC}=\frac{15}{20}\)

uy ra: \(\frac{DB}{DB+DC}=\frac{15}{15+20}\)(tính chất tỉ lệ thức)

Suy ra: \(\frac{DB}{BC}=\frac{15}{35}\Rightarrow DB=\frac{15}{35}.BC=\frac{15}{35}.25=\frac{75}{7}cm\)

\(\Rightarrow DC=BC-BD=25-\frac{75}{7}=\frac{100}{7}cm\)

b. Kẻ AH ⊥ BC

Ta có: SABD = 1/2 AH.BD; SADC = 1/2 AH.DC

Suy ra :\(\frac{S_{ABD}}{S_{ADC}}=\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.DC}=\frac{BD}{DC}\)

\(\frac{DB}{DC}=\frac{15}{20}=\frac{3}{4}\)

\(\Rightarrow\frac{S_{ABD}}{S_{ADC}}=\frac{3}{4}\)

9 tháng 6 2017

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

B C 2 = A B 2 + A C 2 = a 2 + b 2

Suy ra:Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: AM = BM = 1/2.BC (tính chất đường trung tuyến ứng với cạnh huyền).

Suy ra: AM = 1/2 a 2 + b 2

Vì AD là đường phân giác của ∠(BAC) nên:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (tính chất đường phân giác)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

hay Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

22 tháng 4 2017

a)

2016-01-16_191244

Vậy ∠EBD = 900

Vậy trong hình vẽ có ba tam giác vuông đó là:

∆ABE, ∆CBD, ∆EBD.

b) ∆ABE và ∆CDB có:

∠A = ∠C = 900

∠ABE = ∠CDB

=> ∆ABE ∽ ∆CDB => AB/CD = AE/CB
=> CD = AB.CB/AE
= 18 (cm)

∆ABE vuông tại A => BE =

2016-01-16_194702 = 18 cm

∆EBD vuông tại B => ED =

2016-01-16_194738

= 28,2 cm

c) Ta có: 2016-01-16_194946

= 1/2 . 10.15 + 1/2 . 12.18

= 75 + 108 = 183 cm2

SACDE = 1/2 (AE + CD).AC =1/2 (10+18).27=378 cm2

=> SEBD = SEBD – ( SABE + SDBC) = 378 – 183 = 195cm2

15 tháng 3 2018

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Chứng minh

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8
5 tháng 5 2017

a) Theo đề bài ta có:

\(\dfrac{AD}{DC}=\dfrac{BA}{BC}=\dfrac{15}{10}=\dfrac{3}{2}\)

\(\dfrac{AD}{AD+DC}=\dfrac{15}{15+10}hay\dfrac{AD}{AC}=\dfrac{15}{25}\)

=> AD = \(\dfrac{15.AC}{25}=\dfrac{15.15}{25}=9\left(cm\right)\)

DC = AC - AD = 15 - 9 = 6 (cm)

Vậy AD = 9cm; DC = 6cm.

b) Vì BD \(\perp\) BE nên BE là đường phân giác của góc ngoài tại đỉnh B.

Áp dụng tính chất đường phân giác của góc ngoài ta có:

\(\dfrac{EC}{EA}=\dfrac{EC}{EC+AC}=\dfrac{BC}{BA}\)

hay \(\dfrac{EC}{EC+15}=\dfrac{10}{15}=\dfrac{2}{3}\)

=> EC = 30 (cm)

Vậy EC = 30cm.