Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{2013}{2015}< \frac{2014}{2016}\)
b)\(\frac{2013+2014}{2014+2015}< \frac{2013}{2014}+\frac{2014}{2015}\)
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
D=2013+2014/ 2014+2015
D= 2013/2014+2015 + 2014/2014+2015
2013/2014+2015 < 2013/2014
2014/2014+2015 < 2014/2015
suy ra 2013/2014+2015 +2014/2014+2015 < 2013/2014+ 2014/2015
hay D < C ( ĐPCM)
XONG NHA BẠN !@!!!!!!!!!!!!!!!!!!!!chắc chắn đúng lun
Có: \(A=\frac{1}{2013}x\frac{2015}{2014}-\frac{2014}{2013}\)
\(=\frac{1}{2013}.\frac{2015}{2014}-\frac{1}{2013}.2014=\frac{1}{2013}.\left(\frac{2015}{2014}-2014\right)\)
\(\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x...x\left(1-\frac{1}{2014}\right)\)
A = \(\frac{2}{3}x\frac{3}{4}x\frac{4}{5}x...x\frac{2012}{2013}x\frac{2013}{2014}\)
A = \(\frac{2x3x4x...x2012x2013}{3x4x5x...x2013x2014}\)
a = \(\frac{2}{2014}=\frac{1}{1007}\)
Ta có:
\(\frac{2013}{2014}>\frac{2013}{2014+2015}\)
\(\frac{2014}{2015}>\frac{2014}{2014+2015}\)
=> \(\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013}{2014+2015}+\frac{2014}{2014+2015}\)
=> \(\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013+2014}{2014+2015}\)