Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) cô hướng dẫn rồi
2)ta có 1/4 =3/12=1/12+1/6
3)ta có 1/6=3/18=1/9+1/18
4) giống câu 1)
* Với \(m\le2\)thì từ (1) suy ra \(n^3-5n+10=2^m\le2^2\Rightarrow n^3-5n+6\le0\)(2)
Mặt khác do \(n\inℕ^∗\)nên \(n^3-5n+6>0,\)điều này mâu thuẫn với (2). Vậy \(m>2\).
* Với \(m=3\)thì thay vào (1) ta có: \(n^3-5n+10=2^3\Leftrightarrow\left(n^3-2n^2\right)+\left(2n^2-4n\right)-\left(n+2\right)=0\)
\(\Leftrightarrow\left(n-2\right)\left(n^2+2n-1\right)=0\)
Do \(n\inℕ^∗\)nên \(n^2-2n-1>0,\)suy ra \(n-2=0\Leftrightarrow n=2\)
* Với \(m\ge4\)thì biến đổi (1) thành \(\left(n-2\right)\left(n^2+2n-1\right)=8\left(2^{m-3}-1\right)\)(3)
Nhận thấy: \(\left(n^2+2n-1\right)-\left(n-2\right)=n^2+n+1=n\left(n+1\right)+1\)là số lẻ và \(n\inℕ^∗\),
nên hai số \(n^2+2n-1\)và \(n-2\)là hai số tự nhiên khác tính chẵn lẻ. Do đó từ (3) xảy ra 2 khả năng
a)\(\hept{\begin{cases}n-2=8\\n^2+2n-1=2^{m-3}-1\end{cases}\Leftrightarrow}\hept{\begin{cases}n=10\\2^{m-3}=120\end{cases}}\)
Vì \(2^{m-3}\)là số tự nhiên có số tận cùng khác 0 nên \(2^{m-3}\ne120\). Do vậy trường hợp này không xảy ra.
b)\(\hept{\begin{cases}n-2=2^{m-3}-1\\n^2+2n-1=8\end{cases}\Leftrightarrow}\hept{\begin{cases}2^{m-3}=n-1\\n^2+2n-9=0\end{cases}}\)
Do phương trình \(n^2+2n-9=0\)không có nghiệm tự nhiên nên trường hợp này cũng không xảy ra.
Vậy có một cặp số nguyên dương duy nhất thỏa mãn là \(\left(m;n\right)=\left(3;2\right).\)
Cách khác : còn có thể xét các trường hợp của \(n\left(n=1;n\ge2\right)\)trước sau đó mới xét \(m\).
ta có \(\frac{p}{m-1}=\frac{m+n}{p}\Rightarrow P^2=\left(m-1\right)\left(m+n\right)\)
ta có \(Ư\left(P^2\right)\in\left\{1;p;p^2\right\}\)vì p là số nguyên tố
do \(m+n>m-1;m+n\ne m-1\Rightarrow m+n=p^2;m-1=1\)
\(\Rightarrow m=1+1=2\Rightarrow m+n=2+n=P^2\left(đpcm\right)\)
Bình phương của số lẻ chia cho 4 dư 1: (2k + 1)² = 4k(k + 1) + 1 ♦
---------------
Ta cmr m + n và m² + n² không có chung ước nguyên tố lẻ. Thật thế giả sử m + n và m² + n² có chung ước nguyên tố lẻ p => p cũng là ước của (m + n)² - (m² + n²) = 2mn => p là ước của n (hoặc m) => p là ước của m (hoặc n) => m, n có ước chung p > 1, mâu thuẫn với giả thiết.
(m, n) = 1 => m, n không cùng chẵn. Ta xét 2 th
1. m, n cùng lẻ => m + n và m² + n² cùng chẵn. Mặt khác ♦ => m² + n² chia cho 4 dư 2, tức chỉ chia hết cho 2 => (m + n, m² + n²) = 2
2. m, n khác tính chẵn lẻ => m + n và m² + n² cùng lẻ => không có chung ước nguyên tố chẵn, và như trên đã chỉ ra chúng không có chung ước nguyên tố lẻ => (m + n, m² + n²) = 1
a) Lấy 2m+1-2(m-1)\(⋮\)2m+1.
Tìm các giá trị của 2m+1 rồi tìm m
b) Theo đề bài => /m/<2 để /3m-1/<3
a)m-1 chia hết 2m+1
suy ra 2(m-1) chia hết cho 2m+1
\(\Rightarrow\)2m-2\(⋮\)2m+1
\(\Rightarrow\)2(m-1+1)-2\(⋮\)2m+1
Ta có :
\(2^m+2^n=2^{m+n}\Leftrightarrow2^{m+n}-2^m-2^n=0\)
\(\Leftrightarrow2^m.\left(2^n-1\right)-\left(2^n-1\right)=1\Leftrightarrow\left(2^n-1\right).\left(2^m-1\right)=1\)
\(\Leftrightarrow\hept{\begin{cases}2^n-1=1\\2^m-1=1\end{cases}}\Leftrightarrow m=n=1\)
Vậy m = 1 ; n = 1
<br class="Apple-interchange-newline"><div id="inner-editor"></div>2m+2n=2m+n⇔2m+n−2m−2n=0
⇔2m.(2n−1)−(2n−1)=1⇔(2n−1).(2m−1)=1
⇔{
Vậy m = 1 ; n = 1