\(x^2+\sqrt{x+4}+\sqrt{x+11}=x+27\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

1. ĐKXĐ: $\xgeq \frac{-6}{5}$

PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)

\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)

\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)

Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$

Do đó: $x^2-x-2=0$

$\Leftrightarrow (x+1)(x-2)=0$

$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)

 

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Bài 2: Tham khảo tại đây:

Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24

13 tháng 7 2018

\(a.x+2\sqrt{x}=\sqrt{x}\left(\sqrt{x}+2\right)\)

\(b.x-\sqrt{x}=\sqrt{x}\left(\sqrt{x}-1\right)\)

\(c.x\sqrt{x}+x-\sqrt{x}-1=x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)=\left(x-1\right)\left(\sqrt{x}+1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2\)
\(d.a-\sqrt{ab}=\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)\)

\(e.x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2=\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)\)

\(f.x-4\sqrt{x}+4=\left(\sqrt{x}-2\right)^2=\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)\)

\(g.x-4=\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)\)

\(h.a\sqrt{a}+b\sqrt{b}=\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\)

\(i.x\sqrt{x}-27=\left(\sqrt{x}-3\right)\left(x+3\sqrt{x}+9\right)\)

\(k.x\sqrt{x}+1=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)

\(j.x^2-\sqrt{x}=\sqrt{x}\left(x\sqrt{x}-1\right)=\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)

2: \(\Leftrightarrow\left|x-1\right|=x^2-1\)

\(\Leftrightarrow\left(x-1\right)^2=\left(x-1\right)^2\left(x+1\right)^2\)

\(\Leftrightarrow\left(x-1\right)^2\cdot x\cdot\left(x+2\right)=0\)

hay \(x\in\left\{1;0;-2\right\}\)

3: \(\Leftrightarrow\left\{{}\begin{matrix}x>=1\\\left(2x-1\right)^2-\left(x-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=1\\\left(2x-1-x+1\right)\left(2x-1+x-1\right)=0\end{matrix}\right.\)

hay \(x\in\varnothing\)

21 tháng 7 2016

a) Đặt \(x^2+3x+1=y\)

=> y(y+1) - 6 = 0

=> \(y^2+y-6=0\)

=> \(\left[\begin{array}{nghiempt}y=2\\y=-3\end{array}\right.\)

Với y = 2 ta có:

\(x^2+3x+1=2\)

=> \(\left[\begin{array}{nghiempt}x=\frac{-3+\sqrt{13}}{2}\\x=\frac{-3-\sqrt{13}}{2}\end{array}\right.\)

Với y = -3 ta có:

\(x^2+3x+1=-3\)

=>\(\left[\begin{array}{nghiempt}x=1\\x=-4\end{array}\right.\)

Có j không hiểu có thể hỏi lại mk

Chúc bạn làm bài tốt 

21 tháng 7 2016

b) \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-2}\right)^2=1^2\)

\(\Leftrightarrow x+3+x-2-2\sqrt{\left(x+3\right)\cdot\left(x-2\right)}=1\)

\(\Leftrightarrow2x+1-1=2\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow2x=2\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow x=\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow x^2=\left(\sqrt{\left(x+3\right)\left(x-2\right)}\right)^2\)

\(\Leftrightarrow x^2=x^2+x-6\)

\(\Leftrightarrow x-6=0\)

\(\Leftrightarrow x=6\)

23 tháng 7 2019

a) \(x^2-\sqrt{11}^2=\left(x-\sqrt{11}\right)\left(x+\sqrt{11}\right)\)

b) đềsai sai ấy ạ, đâu có dấu căn đâu ta? Nếu có dấu căn thì phải bỏ cái mũ 2 đi chứ??

25 tháng 7 2019

Đúng đề đó bạn