Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. ĐKXĐ: $\xgeq \frac{-6}{5}$
PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)
\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)
\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)
Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$
Do đó: $x^2-x-2=0$
$\Leftrightarrow (x+1)(x-2)=0$
$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)
Bài 2: Tham khảo tại đây:
Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24
\(a.x+2\sqrt{x}=\sqrt{x}\left(\sqrt{x}+2\right)\)
\(b.x-\sqrt{x}=\sqrt{x}\left(\sqrt{x}-1\right)\)
\(c.x\sqrt{x}+x-\sqrt{x}-1=x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)=\left(x-1\right)\left(\sqrt{x}+1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2\)
\(d.a-\sqrt{ab}=\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)\)
\(e.x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2=\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)\)
\(f.x-4\sqrt{x}+4=\left(\sqrt{x}-2\right)^2=\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)\)
\(g.x-4=\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)\)
\(h.a\sqrt{a}+b\sqrt{b}=\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\)
\(i.x\sqrt{x}-27=\left(\sqrt{x}-3\right)\left(x+3\sqrt{x}+9\right)\)
\(k.x\sqrt{x}+1=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
\(j.x^2-\sqrt{x}=\sqrt{x}\left(x\sqrt{x}-1\right)=\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
2: \(\Leftrightarrow\left|x-1\right|=x^2-1\)
\(\Leftrightarrow\left(x-1\right)^2=\left(x-1\right)^2\left(x+1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2\cdot x\cdot\left(x+2\right)=0\)
hay \(x\in\left\{1;0;-2\right\}\)
3: \(\Leftrightarrow\left\{{}\begin{matrix}x>=1\\\left(2x-1\right)^2-\left(x-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=1\\\left(2x-1-x+1\right)\left(2x-1+x-1\right)=0\end{matrix}\right.\)
hay \(x\in\varnothing\)
a) Đặt \(x^2+3x+1=y\)
=> y(y+1) - 6 = 0
=> \(y^2+y-6=0\)
=> \(\left[\begin{array}{nghiempt}y=2\\y=-3\end{array}\right.\)
Với y = 2 ta có:
\(x^2+3x+1=2\)
=> \(\left[\begin{array}{nghiempt}x=\frac{-3+\sqrt{13}}{2}\\x=\frac{-3-\sqrt{13}}{2}\end{array}\right.\)
Với y = -3 ta có:
\(x^2+3x+1=-3\)
=>\(\left[\begin{array}{nghiempt}x=1\\x=-4\end{array}\right.\)
Có j không hiểu có thể hỏi lại mk
Chúc bạn làm bài tốt
b) \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-2}\right)^2=1^2\)
\(\Leftrightarrow x+3+x-2-2\sqrt{\left(x+3\right)\cdot\left(x-2\right)}=1\)
\(\Leftrightarrow2x+1-1=2\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow2x=2\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow x=\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow x^2=\left(\sqrt{\left(x+3\right)\left(x-2\right)}\right)^2\)
\(\Leftrightarrow x^2=x^2+x-6\)
\(\Leftrightarrow x-6=0\)
\(\Leftrightarrow x=6\)
a) \(x^2-\sqrt{11}^2=\left(x-\sqrt{11}\right)\left(x+\sqrt{11}\right)\)
b) đềsai sai ấy ạ, đâu có dấu căn đâu ta? Nếu có dấu căn thì phải bỏ cái mũ 2 đi chứ??
X bằng Căn bậc 5