Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Muốn tính tổng của một dãy số có quy luật cách đều chúng ta thường hướng dẫn học sinh tính theo các bước như sau:
Bước 1: Tính số số hạng có trong dãy: (Số hạng lớn nhất của dãy - số hạng bé nhất của dãy) : khoảng cách giữa hai số hạng liên tiếp trong dãy + 1
Bước 2: Tính tổng của dãy: (Số hạng lớn nhất của dãy + số hạng bé nhất của dãy) x số số hạng có trong dãy : 2
Bài 1: a/b=b/c=c/a chứ không phải c/d
áp dụng tính chất dãy tỉ số bằng nhau, ta có:
a/b=b/c=c/a=(a+b+c)/(b+c+a)=1
a/b=1 => a=b
b/c=1 => b=c
Vậy a=b=c
\(a_1=1,a_2=1+\frac{1}{2},a_3=1+\frac{1}{2}+\frac{1}{3},...,a_n=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\)
\(\Rightarrow a_1< a_2< ...< a_n\left(\text{vì }n\inℕ,n>1\right)\)
\(\Rightarrow\frac{1}{\left(a_1\right)^2}+\frac{1}{\left(2.a_2\right)^2}+....+\frac{1}{\left(n.a_n\right)^2}< \frac{1}{\left(a_1\right)^2}+\frac{1}{\left(2.a_1\right)^2}+....+\frac{1}{\left(n.a_1\right)^2}\)
\(=\frac{1}{1}+\frac{1}{2^2}+...+\frac{1}{n^2}< 1+\frac{1}{1.2}+...+\frac{1}{\left(n-1\right)n}=2-\frac{1}{n}< 2\left(\text{vì }n\inℕ,n>1\right)\)
Vậy...
p/s: lần sau bạn viết đề rõ ra :((