\(\left(a+b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cái này lên lớp 8 mới hok nhưng bạn chịu khó hiểu nha :

 \(\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)

Ta thấy dấu - vs dấu + triệt tiêu nha còn :

\(=a^3+b^3\)

Thế là xong 

Ủng hộ mik nha 

Thnaks

1 tháng 7 2016

k còn cách khác s

10 tháng 6 2018

Bài làm :

a) \(\left(a+b\right)\left(a+b\right)=\left(a+b\right)^2=a^2+2ab+b^2\)

b) \(\left(a-b\right)^2=a^2-2ab+b^2\)

c) \(\left(a+b\right)\left(a-b\right)=a^2-b^2\)

d) \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)

e) \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)

f) \(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)

g) \(\left(a-b\right)\left(a^2+ab+b^2\right)=a^3-b^3\)

10 tháng 6 2018

đúng k bn

15 tháng 5 2017

a) Cho \(3x^2-4x=0\)

\(\Rightarrow3.x.x-4x=0\)

\(\Rightarrow x.\left(3x-4\right)\) = 0

\(\left[{}\begin{matrix}x=0\\3x-4=0\end{matrix}\right.\)

\(3x - 4 =0\)

\(\Rightarrow3x=4\)

\(\Rightarrow x=\dfrac{4}{3}\)

Vậy x= 0 hoặc x =\(\dfrac{4}{3}\)là nghiệm của đa thức \(3x^2-4x\)

b) Cho \(x+3x^2=0\)

\(\Rightarrow x+3.x.x=0\)

\(\Rightarrow x.\left(3x+1\right)=0\)

Suy ra x =0

hoặc \(3x+1=0\)

\(\Rightarrow\)3x=-1

x=\(\dfrac{-1}{3}\)

Vậy ...

15 tháng 5 2017

Bài 3: Tìm nghiệm các đa thức sau:

a. 3x2 - 4x

Gọi P(x) là đa thức 3x2 - 4x.

Cho P(x) = 0

=> 3x2 - 4x = 0

=> x (3x - 4)= 0

Suy ra:

TH1: x = 0

TH2: 3x - 4 = 0

_____3x___= 0 + 4

_____3x___= 4

______x___= \(\dfrac{4}{3}\)

Vậy x = \(\dfrac{4}{3}\) là nghiệm của đa thức 3x2 - 4x.

b. x + 3x2

Gọi Q(x) là đa thức x+3x2

Cho Q(x) = 0

=> x+3x2 = 0

=> x ( 3x) = 0

Suy ra:

TH1: x = 0

TH2: 3x = 0

=> x = 0.

Vậy x = 0 là nghiệm của đa thức x + 3x2 .

Chúc bn hx tốt!

31 tháng 7 2016

1) (a+b).(a+b)=(a+b)2=a2+2ab+b2

2) (a-b)2=a2-2ab+b2

3) (a+b).(a-b)=a2-b2

4) (a+b)3=a3+3a2b+3ab2+b3

5) (a-b)3=a3-3a2b+3ab2-b3

6) (a+b).(a2-ab+b2)=a3+b3

7) (a-b).(a2+ab+b2)=a3-b3

mấy cái ày là hằng đẳng thức đáng nhớ mà

31 tháng 7 2016

lấy a+a b+b

lấy b^2-a

lấy a.b b.a

a^3 +b

b^3-a

hai câu cuối thì mình k biết

18 tháng 8 2016

1)  (a+b)3=(a+b)(a+b)(a+b)=(a2+ab+ab+b2)(a+b)=(a2+2ab+b2​)(a+b)(a3+2a2b+ab2)+(a2b+2ab2+b3)=a3+2a2b+ab2+a2b+2ab2+b3

=a3+3a2b+3ab2+b3

18 tháng 8 2016

bạn có thể giải tất cả hộ mình không ?

21 tháng 5 2018

1) \(\left(a+b\right).\left(a+b\right)=a.\left(a+b\right)+b.\left(a+b\right)=a^2+ab+b^2+ab\)

2) \(\left(a-b\right)^2=\left(a-b\right).\left(a-b\right)=a.\left(a-b\right)-b.\left(a-b\right)=a^2-ab-ab+b^2\)

\(=a^2+\left(-ab\right)+\left(-ab\right)+b^2\)

3) \(\left(a+b\right).\left(a-b\right)=a.\left(a-b\right)+b.\left(a-b\right)=a^2-ab+ab-b^2=a^2-b^2\)

\(=a^2+-\left(b^2\right)\)

4) \(\left(a+b\right)^3=\left(a+b\right).\left(a+b\right).\left(a+b\right)=a.\left(a+b\right).\left(a+b\right)+b.\left(a+b\right).\left(a+b\right)\)

\(=\left[a.\left(a+b\right)\right].\left(a+b\right)+\left[b.\left(a+b\right)\right].\left(a+b\right)=\left(a^2+ab\right).\left(a+b\right)+\left(ab+b^2\right).\left(a+b\right)\)

\(=a^2.\left(a+b\right)+ab.\left(a+b\right)+ab.\left(a+b\right)+b^2.\left(a+b\right)\)

\(=a^3+a^2b+a^2b+ab^2+a^2b+ab^2+b^2a+b^3\)

5) \(\left(a-b\right)^3=\left(a-b\right).\left(a-b\right).\left(a-b\right)=a.\left(a-b\right).\left(a-b\right)-b.\left(a-b\right).\left(a-b\right)\)

\(=\left(a^2-ab\right).\left(a-b\right)-\left(ba-b^2\right).\left(a-b\right)\)

\(=a^2.\left(a-b\right)-ab.\left(a-b\right)-ba.\left(a-b\right)+b^2.\left(a-b\right)\)

\(=a^3-a^2b-a^2b+ab^2-ba^2+b^2a-ba^2+b^2a-b^3\)

6) \(\left(a+b\right).\left(a^2-ab+b^2\right)=a.\left(a^2-ab+b^2\right)+b.\left(a^2-ab+b^2\right)\)

\(=a^3-a^2b+ab^2+ba^2-ab^2+b^3\)

\(=a^3+b^3\)

7) \(\left(a-b\right).\left(a^2+ab+b^2\right)=a.\left(a^2+ab+b^2\right)-b.\left(a^2+ab+b^2\right)\)

\(=a^3+a^2b+ab^2-ba^2-ab^2-b^3\)

\(=a^3-b^3\)

21 tháng 5 2018

1 a^2+2ab+b^2

2 a^2-2ab+b^2

3 a^2-b^2

4 a^3+3a^2b+3ab^2+b^3

5 a^3-3a^2b+3ab^2-b^3

6 a^3+b^3

7 a^3-b^3

4 tháng 7 2016

1) (a+b).(a+b)=a^2+ab+ba+b^2

                    =a^2+2ab+b^2

2)(a-b)^2=(a-b).(a-b)=a^2-ab-ab+b^2=a^2-2ab+b^2

3)(a+b).(a-b)=a^2-ab+ba-b^2=a^2-b^2

4 tháng 7 2016

Chữ Shin còn viết sai nữa à  Tiểu Shyn?????????????????????????????????????????????????????????????????????????????\ ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

K na

Đặt \(\hept{\begin{cases}a+b=m\\b+c=n\\c+a=p\end{cases}}\)

Xem VT = A

\(\Rightarrow A=m^2+n^2+p^2-mn-np-mp\)

\(2A=\left(m-n\right)^2+\left(n-p\right)^2+\left(p-m\right)^2\)

\(=\left(a+b-b-c\right)^2+\left(b+c-c-a\right)^2+\left(c+a-a-b\right)^2\)

\(=\left(a-c\right)^2+\left(b-a\right)^2+\left(c-b\right)^2\)

\(=a^2-2ac+c^2+b^2-2ab+a^2+c^2-2bc+b^2\)

\(=2\left(a^2+b^2+c^2-2ab-2bc-2ac\right)\)

\(\Rightarrow A=a^2+b^2+c^2-ab-bc-ca\)(đpcm)