Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta=\left(3+m\right)^2-8\left(m+1\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m^2-2m+1\le0\end{matrix}\right.\) \(\Rightarrow m=1\)
b/ - Với \(m=-1\Rightarrow-2x+2< 0\Rightarrow x>1\) (ko thỏa mãn)
Với \(m\ne-1\Rightarrow\Delta=\left(m-1\right)^2\ge0\) \(\forall m\)
Để \(f\left(x\right)< 0\) với mọi \(x< -1\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+1< 0\\-1< x_1< x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\\left(x_1+1\right)\left(x_2+1\right)>0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\\frac{2}{m+1}+\frac{m+3}{m+1}+1>0\\\frac{m+3}{m+1}>-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\2m+6< 0\\3m+5< 0\end{matrix}\right.\) \(\Rightarrow m< -3\)
\(m^2\left(x-1\right)+x-3< 0\Leftrightarrow\left(m^2+1\right)x-m^2-3< 0\)
Đặt \(f\left(x\right)=\left(m^2+1\right)x-m^2-3\)
\(f\left(x\right)< 0\forall x\in\left[-5;2\right]\Leftrightarrow\hept{\begin{cases}f\left(-5\right)< 0\\f\left(2\right)< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-6m^2-8< 0\\m^2-1< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6m^2+8>0\\m^2< 1\end{cases}}\Leftrightarrow\left|m\right|< 1\Leftrightarrow-1< m< 1\)
Vậy có duy nhất 1 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán, đó là giá trị m = 0