\(4-\sqrt{3}\) và \(5-\sqrt{5}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2020

a, 2020 lớn hơn

14 tháng 9 2020

a)\(\left(\sqrt{2019.2021}\right)^2=2019.2021=\left(2020-1\right)\left(2020+1\right)=2020^2-1< 2020^2\)

=> \(\sqrt{2019.2021}< 2020\)

b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>5+2\sqrt{4}=5+2.2=9\)

=> \(\sqrt{2}+\sqrt{3}>3\)

c) \(9+4\sqrt{5}=4+4\sqrt{5}+5=\left(2+\sqrt{5}\right)^2>\left(2+\sqrt{4}\right)^2=\left(2+2\right)^2=16\)

=> \(9+4\sqrt{5}>16\)

d) \(\sqrt{11}-\sqrt{3}>\sqrt{9}-\sqrt{1}=3-1=2\)

=> \(\sqrt{11}-\sqrt{3}>2\)

3 tháng 9 2020

a, Ta có : \(\sqrt{120}^2=120\)

\(\left(5\sqrt{7}\right)^2=25.7=175\)

\(\Rightarrow\sqrt{120}< 5\sqrt{7}\)

b, Ta có : \(\left(\frac{1}{6}\sqrt{5}\right)^2=\frac{1}{36}.5=\frac{5}{36}\)

\(\left(\frac{1}{5}\sqrt{6}\right)^2=\frac{1}{25}.6=\frac{6}{25}\)

\(\Rightarrow\frac{5}{36}< \frac{6}{25}\)

21 tháng 7 2018

\(\sqrt{25}=\pm5\)

\(\sqrt{49}=\pm7\)

\(\sqrt{5}+\sqrt{3}>\sqrt{4}+\sqrt{1}=2+1=3\)

Vậy \(\sqrt{5}+\sqrt{3}>3\)

21 tháng 7 2018

\(\sqrt{25}=5\)

\(\sqrt{49}=7\)               

\(\sqrt{5}+\sqrt{3}>3\)

:v bài so sánh k bt giải thik sao nx

5 tháng 9 2020

a) Ta có: \(\frac{1}{5}\sqrt{150}=\frac{1}{5}\cdot5\sqrt{6}=\sqrt{6}=\frac{1}{3}\cdot\sqrt{6\cdot9}=\frac{1}{3}\sqrt{54}>\frac{1}{3}\sqrt{51}\)

b) Ta có: \(\frac{1}{2}\sqrt{6}=\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}=6\sqrt{\frac{1}{2}}\)

5 tháng 9 2020

a) Vì  \(5,\left(6\right)< 6\)\(\Rightarrow\)\(\frac{51}{9}< \frac{150}{25}\)

                                    \(\Rightarrow\)\(\sqrt{\frac{51}{9}}< \sqrt{\frac{150}{25}}\)

                                    \(\Rightarrow\)\(\frac{1}{3}\sqrt{51}< \frac{1}{5}\sqrt{150}\)

b) Vì  \(1,5< 18\)\(\Rightarrow\)\(\frac{6}{4}< \frac{36}{2}\)

                                 \(\Rightarrow\)\(\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}\)

                                 \(\Rightarrow\)\(\frac{1}{2}\sqrt{6}< 6\sqrt{\frac{1}{2}}\)

18 tháng 7 2015

Xét hiệu :

\(A-B=2\left(\sqrt{1}-\sqrt{2}\right)+2.\left(\sqrt{3}-\sqrt{4}\right)+...+2\left(\sqrt{19}-\sqrt{20}\right)\)

Mà: \(\sqrt{1}<\sqrt{2};\sqrt{3}<\sqrt{4};...;\sqrt{19}<\sqrt{20}\)

nên \(\sqrt{1}-\sqrt{2}<0;\sqrt{3}-\sqrt{4}<0;...;\sqrt{19}-\sqrt{20}<0\)

=> A - B < 0 => A < B

 

chỗ số 44, mấy bạn sửa lại dùm mình thành 4 nha

a, \(\left(\sqrt{2006}-\sqrt{2005}\right).\left(\sqrt{2006}+\sqrt{2005}\right)=\left(2006-2005\right)=1\)

25 tháng 6 2019

b.

=\(\frac{7+4\sqrt{3}+14-8\sqrt{3}}{49-48}\left(21+4\sqrt{3}\right)\) 

=\(\left(21-4\sqrt{3}\right)\left(21+4\sqrt{3}\right)\) 

=441-48

393

vậy.......

hc tốt

27 tháng 8 2019

\(a,\sqrt{3-x}+\sqrt{2-x}=1\)

\(\Rightarrow\sqrt{3+x}=1-\sqrt{2-x}\)

\(\Rightarrow3+x=1-2\sqrt{2-x}+2-x\)

\(\Rightarrow2x+2\sqrt{2-x}=0\)

\(\Rightarrow x+\sqrt{2-x}=0\)

\(\Rightarrow2-x=\left(-x\right)^2\)

\(\Rightarrow2-x=x^2\)

\(\Rightarrow2-x^2-x=0\)

\(\Rightarrow x^2+x-2=0\) 

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)

Vậy....