Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk x>= -2
Đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\Rightarrow\sqrt{x^2+7x+10}=a+b;a^2-b^2=x+5-x-2=3\)
pt <=> \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
<=> \(\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)
<=> \(\left(a-b\right)\left(ab+1\right)-\left(a-b\right)\left(a+b\right)=0\)
<=> \(\left(a-b\right)\left(ab+1-a-b\right)=0\)
<=> \(\left(a-b\right)\left(b-1\right)\left(a-1\right)=0\)
=> a = b hoặc b = 1 hoặc a = 1
(+) a = b => x + 5 = x +2 => 0x = -3 (loại )
(+) a = 1 => x + 5 = 1 => x = -4 (loại )
(+) b = 1 => x + 2 = 1=> x = -1 ( TM)
Vậy x = -1 là nghiệm của pt
a) \(3\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=5\)
\(\Leftrightarrow3\sqrt{x}-6\sqrt{x}+4\sqrt{x}=5\)
\(\Leftrightarrow\sqrt{x}=5\)
<=> x = 25
b) pt <=> \(\left(x^2+5\right)=\left(x+1\right)^2\)
<=> \(\left(x^2+5\right)=x^2+2x+1\)
<=> 2x = 4
<=> x = 2
c) pt <=> \(45-14\sqrt{x}+x=x-11\)
<=> \(45+11=14\sqrt{x}\)
<=> \(56=14\sqrt{x}\)
<=> \(4=\sqrt{x}\)
<=> x = 16
p/s : Cậu tự đặt điều kiện nhé
Câu 1:
ĐK: \(x\geq -2\)
Đặt \(\sqrt{x+5}=a; \sqrt{x+2}=b(a,b\geq 0)\)
\(\Rightarrow ab=\sqrt{(x+5)(x+2)}=\sqrt{x^2+7x+10}\)
PT trở thành:
\((a-b)(1+ab)=3\)
\(\Leftrightarrow (a-b)(1+ab)=(x+5)-(x+2)=a^2-b^2\)
\(\Leftrightarrow (a-b)(1+ab)-(a-b)(a+b)=0\)
\(\Leftrightarrow (a-b)(1+ab-a-b)=0\)
\(\Leftrightarrow (a-b)(a-1)(b-1)=0\)
Vì \(a\neq b\Rightarrow \left[\begin{matrix} a-1=0\\ b-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} a=\sqrt{x+5}=1\\ b=\sqrt{x+2}=1\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=-4\\ x=-1\end{matrix}\right.\). Vì $x\geq -2$ nên chỉ có $x=-1$ là nghiệm duy nhất.
Câu 2:
ĐK: \(-4\leq x\leq 4\)
Ta có: \((\sqrt{x+4}-2)(\sqrt{4-x}+2)=2x\)
\(\Leftrightarrow \frac{(x+4)-2^2}{\sqrt{x+4}+2}.(\sqrt{4-x}+2)=2x\)
\(\Leftrightarrow x.\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2x\)
\(\Leftrightarrow x\left(\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}-2\right)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ \sqrt{4-x}+2=2\sqrt{x+4}+4(*)\end{matrix}\right.\)
Xét $(*)$
Đặt \(\sqrt{4-x}=a; \sqrt{x+4}=b\) thì ta có hệ:
\(\left\{\begin{matrix} a^2+b^2=8\\ a+2=2b+4\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a^2+b^2=8\\ a=2(b+1)\end{matrix}\right.\)
\(\Rightarrow 4(b+1)^2+b^2=8\)
\(\Leftrightarrow 5b^2+8b-4=0\Leftrightarrow (5b-2)(b+2)=0\)
\(\Rightarrow b=\frac{2}{5}\) (do \(b\geq 0)\)
\(\Rightarrow x+4=b^2=\frac{4}{25}\Rightarrow x=\frac{-96}{25}\) (t/m)
Vậy \(x\in \left\{ \frac{-96}{25}; 0\right\}\)
đặt \(\sqrt{x+5}=a\);\(\sqrt{x+2}=b\) => ab=\(\sqrt{x^2+7x+10}\) và \(a^2-b^2=3\)
do đó pt trở thành \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\left(a-b\right)\left(1+ab\right)-\left(a-b\right)\left(a+b\right)=0\)
\(\left(a-b\right)\left(1+ab-a-b\right)=0\)
đến đây tự giải tiếp nhé
i)
\(x^2-x^2\sqrt{2}-2x-2\sqrt{2}x+1+3\sqrt{2}=0\)
\(\left(x-1\right)^2+\sqrt{2}\left(x^2-2x+3\right)=0\)
\(\left(x-1\right)^2+\sqrt{2}\left(x-1\right)^2+2\sqrt{2}=0\)
\(\left(x-1\right)^2+\sqrt{2}\left(x-1\right)^2=-2\sqrt{2}\)
=> Phương trình vô nghiệm
ii)
Đặt: \(6x^2-7x=a\)
Ta có: \(a^2-2a-3=0\)
\(\left(a-3\right)\left(a+1\right)=0\)
\(\left(6x^2-7x-3\right)\left(6x^2-7x+1\right)=0\)
\(x=\frac{3}{2};-\frac{1}{3};1;\frac{1}{6}\)
Phương trình vô nghiệm
ii)
Đặt: $6x^2-7x=a$6x2−7x=a
Ta có: $a^2-2a-3=0$a2−2a−3=0
$\left(a-3\right)\left(a+1\right)=0$(a−3)(a+1)=0
$\left(6x^2-7x-3\right)\left(6x^2-7x+1\right)=0$(6x2−7x−3)(6x2−7x+1)=0
$
Mấy bài này dài vật vã ghê =)))))))))))))
1, a, \(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\)
= \(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}\)
=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}\right)^2-5}\)
=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{8+4\sqrt{3}-5}\)
= \(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{3+4\sqrt{3}}\)
=\(\sqrt{6}+\sqrt{2}+\sqrt{5}\)
b, M = \(\frac{\sqrt{3}\left(x-1\right)}{\sqrt{x^2}-x+1}\)(ĐKXĐ: \(x\ge0\))
= \(\frac{\sqrt{3}\left(x-1\right)}{x-x+1}\)
= \(\sqrt{3}\left(x-1\right)\)
Thay x = \(2+\sqrt{3}\)(TMĐK) vào M ta có:
M = \(\sqrt{3}\left(2+\sqrt{3}-1\right)=\sqrt{3}\left(1+\sqrt{3}\right)=3+\sqrt{3}\)
Vậy với x = \(2+\sqrt{3}\)thì M = \(3+\sqrt{3}\)
2, Mình chỉ giải câu a thôi nhé:
\(\sqrt{1+b}+\sqrt{1+c}\ge2\sqrt{1+a}\)
\(\Leftrightarrow\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge\left(2\sqrt{1+a}\right)^2\)
\(\Leftrightarrow1+b+2\sqrt{\left(1+b\right)\left(1+c\right)}+1+c\ge4\left(1+a\right)\)
\(\Leftrightarrow2+b+c+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)\left(1\right)\)
Vì \(\left(\sqrt{1+b}-\sqrt{1+c}\right)^2\ge0\)
\(\Rightarrow2+b+c\ge2\sqrt{\left(1+b\right)\left(1+c\right)}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow4+2\left(b+c\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow4+2\left(b+c\right)\ge4\left(1+a\right)\)
\(\Leftrightarrow4+2\left(b+c\right)\ge4+4a\)
\(\Leftrightarrow2\left(b+c\right)\ge4a\)
\(\Leftrightarrow b+c\ge2a\)
4*. Thật ra cái này mình xài làm trội, làm giảm là được mà
Đặt A = \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n}}\)
\(\frac{1}{2}A=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+....+\frac{1}{2\sqrt{n}}\)
\(\frac{1}{2}A=\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+....+\frac{1}{\sqrt{n}+\sqrt{n}}\)
Ta có: \(\frac{1}{\sqrt{2}+\sqrt{2}}>\frac{1}{\sqrt{3}+\sqrt{2}}\)
\(\frac{1}{\sqrt{3}+\sqrt{3}}>\frac{1}{\sqrt{4}+\sqrt{3}}\)
+ .........................................................
\(\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}\)
Cộng tất cả vào
\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+...+\frac{1}{\sqrt{n+1}+\sqrt{n}}\)\(\frac{1}{2}A>\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}\)
\(\frac{1}{2}A>\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n+1}-\sqrt{n}\)
\(\frac{1}{2}A>\sqrt{n+1}-\sqrt{2}\)
\(A>2\sqrt{n+1}-2\sqrt{2}>2\sqrt{n+1}-3\)
\(A+1>2\sqrt{n+1}-3+1\)
\(A+1>2\sqrt{n+1}-2\)
\(A+1>2\left(\sqrt{n+1}-1\right)\)
Vậy ta có điều phải chứng minh.
Đặt từng cái căn là a và b, đưa về dạng
\(\left(a-b\right)\left(ab+1\right)=a^2-b^2\)
Chuyển vế đưa về phương trình tích là xong