\(\frac{3x}{2}+\frac{x}{x+1}=2\).<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

\(\text{GIẢI :}\)

ĐKXĐ : \(x\ne-1\)

\(\frac{3x}{2}+\frac{x}{x+1}=2\)

\(\Leftrightarrow\frac{3x\left(x+1\right)}{2\left(x+1\right)}+\frac{2x}{2\left(x+1\right)}=\frac{4\left(x+1\right)}{2\left(x+1\right)}\)

\(\Rightarrow3x\left(x+1\right)+2x=4\left(x+1\right)\)

\(\Leftrightarrow3x\left(x+1\right)+2x-4\left(x+1\right)=0\)

\(\Leftrightarrow3x^2+3x+2x-4x-4=0\)

\(\Leftrightarrow3x^2+x-4=0\)

\(\Leftrightarrow3x^2-3x+4x-4=0\)

\(\Leftrightarrow3x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\3x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{4}{3}\end{cases}}\)

2 ngiệm vừa tìm được đều thỏa mãn ĐKXĐ.

Vậy tập nghiệm của phương trình là \(S=\left\{1;-\frac{4}{3}\right\}.\)

6 tháng 4 2020

3x/2 + x/x+1 = 2  <=>  3x(x+1)/2(x+1) + 2x/2(x+1) = 4(x+1)/2(x+1) \(\frac{3}{2}\). NHÂN PHÁ NGOẶC VÀ KHỬ MẪU TA ĐC: 

<=> 3x2 + 3x + 2x = 4x + 4  <=>  3x2 + x - 4 = 0\(\Delta\) 

Đen - ta (kí hiệu tam giác) = b2 - 4ac = 12 - 4.(-4).3 = 1 + 48 = 49 > 0  => Phương trình có 2 nghiệm phân biệt : 

x1 = -b+ căn đen ta / 2a = -1 + căn 49 / 2.3 = 6/6 =1

x2 = -b - căn đen ta / 2a = -1 - căn 49 / 2.3 = -8/6

Vậy phương trình có 2 nghiệm phân biệt là : S\(\hept{\begin{cases}\\\end{cases}}1,-\frac{8}{6}\)

18 tháng 3 2020

ĐKXĐ:\(x\ne1\)

\(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)

\(\Leftrightarrow\frac{x^2+x+1+2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Rightarrow x^2+x+1+2x-2=3x^2\)

\(\Leftrightarrow x^2+3x-1=3x^2\)\(\Leftrightarrow2x^2-3x+1=0\)

\(\Leftrightarrow2x^2-2x-x+1=0\)\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(KTMĐK\right)\\x=\frac{1}{2}\left(TMĐK\right)\end{cases}}}\)

Vậy nghiệm của pt là \(x=\frac{1}{2}\)

18 tháng 3 2020

\(pt\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x^2+3x-1}{x^3-1}=\frac{3x^2}{x^3-1}\)

\(\Rightarrow x^2+3x-1=3x^2\Leftrightarrow3x-1=2x^2\Leftrightarrow2x^2-3x+1=0\Leftrightarrow x^2-\frac{3}{2}x+\frac{1}{2}=0\)

đến đây là pt bậc 2

21 tháng 6 2020

a) 8x - 3 = 5x + 12

<=> 8x - 5x = 12 + 3

<=> 3x = 15

<=> x = 5

b) \(\frac{x}{x^2-4}=\frac{1}{x+2}-\frac{1-x}{2-x}\) ; x khác +-2

<=> \(\frac{x}{\left(x-2\right)\left(x+2\right)}=\frac{1}{x+2}-\frac{1-x}{2-x}\)

=> x(2 - x) = (x - 2)(2 - x) - (1 - x)(x + 2)(x - 2)

<=> -x^2 + 2x = x^3 - 2x^2

<=> -x^2 + 2x - x^3 + 2x^2 = 0

<=>  x^3 - x^2 - 2x = 0

<=> x(x + 1)(x - 2) = 0

<=> x = 0 hoặc x + 1 = 0 hoặc x - 2 = 0

<=> x = 0 (tm) hoặc x = -1 (tm) hoặc x = 2 (ktm)

Vậy: phương trình có tập nghiệm: S = {0; -1}

c) |x - 5| = 3x + 1

Ta có: \(\left|x-5\right|=\hept{\begin{cases}x-5\text{ nếu }x-5\ge0\Leftrightarrow x\ge5\\-\left(x-5\right)\text{ nếu }x-5< 0\Leftrightarrow x< 5\end{cases}}\)

+) Nếu x > 5, ta có phương trình:

x - 5 = 3x + 1

<=> x - 3x = 1 + 5

<=> -2x = 6

<=> x = -3 (ktm)

+) Nếu x < 5, ta có phương trình:

-(x - 5) = 3x + 1

<=> -x + 5 = 3x + 1

<=> -x - 3x = 1 - 5

<=> -4x = -4

<=> x = 1 (tm)

Vậy: phương trình có tập nghiệm: S = {1}

24 tháng 5 2021

Câu 1a : tự kết luận nhé 

\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)

Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)

\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)

c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)

\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0 

24 tháng 5 2021

1) 2(x + 3) = 5x - 4

<=> 2x + 6 = 5x - 4

<=> 3x = 10

<=> x = 10/3

Vậy x = 10/3 là nghiệm phương trình 

b) ĐKXĐ : \(x\ne\pm3\)

\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)

=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)

=> x + 3 - 2(x - 3) = 5 - 2x

<=> -x + 9 = 5 - 2x

<=> x = -4 (tm) 

Vậy x = -4 là nghiệm phương trình 

c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)

<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)

<=> 3(x + 1) \(\ge\)2(2x - 2)

<=> 3x + 3 \(\ge\)4x - 4

<=> 7 \(\ge\)x

<=> x \(\le7\)

Vậy x \(\le\)7 là nghiệm của bất phương trình 

Biểu diễn

-----------------------|-----------]|-/-/-/-/-/-/>

                           0             7

20 tháng 3 2020

\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne3;x\ne-1\right)\)

\(\Leftrightarrow\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\frac{2x\cdot2}{2\left(x-3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{2x^2-6x}{2\left(x-3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{2x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}=0\)

=> 2x=0

<=> x=0

Vậy x=0

20 tháng 3 2020

+ Ta có: \(\frac{x}{2.\left(x-3\right)}+\frac{x}{2.\left(x+1\right)}=\frac{2x}{\left(x+1\right).\left(x-3\right)}\)\(\left(ĐKXĐ: x\ne-1, x\ne3\right)\)

      \(\Leftrightarrow\frac{x.\left(x+1\right)+x.\left(x-3\right)}{2.\left(x-3\right).\left(x+1\right)}=\frac{4x}{2.\left(x-3\right).\left(x+1\right)}\)

       \(\Rightarrow x^2+x+x^2-3x=4x\)

      \(\Leftrightarrow\left(x^2+x^2\right)+\left(x-3x-4x\right)=0\)

      \(\Leftrightarrow2x^2-6x=0\)

      \(\Leftrightarrow2x.\left(x-6\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(TM\right)\\x=6\left(TM\right)\end{cases}}\)

Vậy \(S=\left\{0,6\right\}\)

+ Ta có: \(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)\(\left(ĐKXĐ:x\ne1,x^2+x+1\ne0\right)\)

       \(\Leftrightarrow\frac{\left(x^2+x+1\right)+2.\left(x-1\right)}{\left(x-1\right).\left(x^2+x+1\right)}=\frac{3x^2}{\left(x-1\right).\left(x^2+x+1\right)}\)

        \(\Rightarrow x^2+x+1+2x-2=3x^2\)

      \(\Leftrightarrow\left(x^2-3x^2\right)+\left(x+2x\right)+\left(1-2\right)=0\)

      \(\Leftrightarrow-2x^2+3x-1=0\)

      \(\Leftrightarrow2x^2-3x+1=0\)

      \(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)

      \(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)=0\)

      \(\Leftrightarrow\left(2x-1\right).\left(x-1\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=1\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(TM\right)\\x=1\left(L\right)\end{cases}}\)

Vậy \(S=\left\{\frac{1}{2}\right\}\)

17 tháng 3 2020

\(\text{GIẢI :}\)

ĐKXĐ : \(x\ne-1,\text{ }x\ne0\)

\(\frac{1}{x+1}+\frac{7}{3x}=1\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{x+1}+\frac{7}{3x}=\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{x+1}+\frac{7}{3x}-\frac{3}{2}=0\)

\(\Leftrightarrow\frac{6x}{6x\left(x+1\right)}+\frac{14\left(x+1\right)}{6x\left(x+1\right)}-\frac{9x\left(x+1\right)}{6x\left(x+1\right)}=0\)

\(\Rightarrow6x+14\left(x+1\right)-9x\left(x+1\right)=0\)

\(\Leftrightarrow6x+14x+14-9x^2-9x=0\)

\(\Leftrightarrow-9x^2+11x+14=0\)

\(\Leftrightarrow-9x^2+18x-7x+14=0\)

\(\Leftrightarrow\text{ }(-9x^2+18x)-\left(7x-14\right)=0\)

\(\Leftrightarrow-9x\left(x-2\right)-7\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(-9x+7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\-9x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\-9x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-\frac{7}{9}\end{cases}}}\)

Kiểm tra lại, ta thấy các giá trị của \(x \) vừa tìm được thỏa mãn ĐKXĐ.

Vậy tập nghiệm của phương trình là \(S=\left\{2;-\frac{7}{9}\right\}.\)

25 tháng 6 2019

ĐKXĐ: \(x\ne\pm2\)

\(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)

\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(3x-2\right)+1}{\left(x+2\right)\left(x-2\right)}\)

\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-2x+1\)

\(\Leftrightarrow-23x=7\)

\(\Leftrightarrow x=\frac{-7}{23}\left(tm\right)\)

Vậy: \(S=\left\{-\frac{7}{23}\right\}\)

=.= hk tốt!!

25 tháng 6 2019

Giải :

\(\text{ĐKXĐ}\: :\: x\ne\pm2\)

\(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)

 \(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)}{x^2-4}=\frac{x\left(3x-2\right)+1}{x^2-4}\)

Khử mẫu : \(\left(-6x^2-12x+x+2\right)+\left(9x^2-18x+4x-8\right)=3x^2-2x+1\)

           \(\Leftrightarrow-23x=7\Leftrightarrow x=\frac{7}{23}\).