Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\frac{3}{41}-\frac{12}{47}+\frac{27}{53}}{\frac{4}{41}-\frac{16}{47}+\frac{36}{53}}=\frac{3\left(\frac{1}{41}-\frac{4}{47}+\frac{9}{53}\right)}{4\left(\frac{1}{41}-\frac{4}{47}+\frac{9}{53}\right)}=\frac{3}{4}\)
\(\frac{\frac{3}{41}-\frac{12}{47}+\frac{27}{53}}{\frac{4}{41}-\frac{16}{47}+\frac{36}{53}}=\frac{3\cdot\left(\frac{1}{41}-\frac{4}{47}+\frac{9}{53}\right)}{4\cdot\left(\frac{1}{41}-\frac{4}{47}+\frac{9}{53}\right)}=\frac{3}{4}\)
Chúc bạn học tốt!^_^
\(\frac{\frac{3}{41}-\frac{12}{47}+\frac{27}{53}}{\frac{4}{41}-\frac{16}{47}+\frac{36}{53}}=\frac{3.\left(\frac{1}{41}-\frac{4}{47}+\frac{9}{53}\right)}{4.\left(\frac{1}{41}-\frac{4}{47}+\frac{9}{53}\right)}=\frac{3}{4}\)
a) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(=5.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(=5.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right):2\)
\(=5.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right):2\)
\(=5.\left(1-\frac{1}{101}\right):2=5.\frac{100}{101}:2=\frac{500}{101}.\frac{1}{2}\)\(=\frac{250}{101}\)
b) \(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)
\(=3\left(\frac{1}{3.6}+\frac{1}{6.9}+...+\frac{1}{30.33}\right)\)\(.\frac{1}{3}\)
\(=(\frac{3}{3.6}+\frac{3}{6.9}+...+\frac{3}{30.33}).\frac{1}{3}\)
\(=(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}).\frac{1}{3}\)
\(=(\frac{1}{3}-\frac{1}{33}).\frac{1}{3}=\frac{10}{33}.\frac{1}{3}=\frac{10}{99}\)
Bài dạng này đăng trên đây nhiều rồi.
=\(\frac{3\left(\frac{1}{41}-\frac{4}{47}+\frac{9}{53}\right)}{4\left(\frac{1}{41}-\frac{4}{47}+\frac{9}{53}\right)}\)
\(=\frac{3}{4}\)
\(1)\) \(\frac{\frac{3}{41}-\frac{12}{47}+\frac{27}{53}}{\frac{4}{41}-\frac{16}{47}+\frac{36}{53}}=\frac{3\left(\frac{1}{41}-\frac{4}{47}+\frac{9}{53}\right)}{4\left(\frac{1}{41}-\frac{4}{47}+\frac{9}{53}\right)}=\frac{3}{4}\)
\(2)\) Đặt \(A=4+2^2+2^4+...+2^{20}\)
\(4A=2^4+2^4+2^6+...+2^{22}\)
\(4A-A=\left(2^4+2^4+2^6+...+2^{22}\right)+\left(2^2+2^2+2^4+...+2^{20}\right)\)
\(3A=2^4+2^{22}-2^2-2^2\)
\(3A=2^{22}+2^4-2^3\)
\(A=\frac{2^{22}+2^4-2^3}{3}\)
\(3)\) \(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\) ( bạn ghi đầy đủ ra nhé ở đây mk viết "..." cho nhanh )
\(=\)\(5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\right)\)
\(=\)\(5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=\)\(5\left(1-\frac{1}{31}\right)\)
\(=\)\(5.\frac{30}{31}\)
\(=\)\(\frac{150}{31}\)
Chúc bạn học tốt ~
Ta có:
\(\frac{3\left(\frac{1}{41}-\frac{4}{47}+\frac{9}{53}\right)}{4\left(\frac{1}{41}-\frac{4}{47}+\frac{9}{53}\right)}=\frac{3}{4}\)
a: \(=\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}+\dfrac{-\dfrac{1}{4}\cdot\dfrac{-2}{3}-\dfrac{3}{4}:\dfrac{1}{6}}{\dfrac{3}{2}\cdot\left(\dfrac{-2}{3}-\dfrac{3}{4}\cdot\dfrac{-2}{3}\right)}\)
\(=\dfrac{3}{4}+\dfrac{\dfrac{2}{12}-\dfrac{9}{2}}{\dfrac{3}{2}\cdot\dfrac{-1}{6}}=\dfrac{3}{4}+\dfrac{-13}{3}:\dfrac{-3}{12}\)
\(=\dfrac{3}{4}+\dfrac{13}{3}\cdot\dfrac{12}{3}=\dfrac{3}{4}+\dfrac{156}{9}=\dfrac{217}{12}\)
b: \(A=158\left(\dfrac{12\left(1-\dfrac{1}{7}-\dfrac{1}{289}-\dfrac{1}{85}\right)}{4\left(1-\dfrac{1}{7}-\dfrac{1}{289}-\dfrac{1}{85}\right)}:\dfrac{5\left(1+\dfrac{1}{13}+\dfrac{1}{169}+\dfrac{1}{91}\right)}{6\left(1+\dfrac{1}{13}+\dfrac{1}{169}+\dfrac{1}{91}\right)}\right)\cdot\dfrac{50550505}{711711711}\)
\(=158\cdot\left(3\cdot\dfrac{6}{5}\right)\cdot\dfrac{50550505}{711711711}\)
\(\simeq40.39\)
\(=\frac{3.\left(\frac{1}{41}-\frac{4}{47}+\frac{9}{53}\right)}{4.\left(\frac{1}{41}-\frac{4}{47}+\frac{9}{53}\right)}=\frac{3}{4}\)