\(\sqrt{4x^2-4x+1}=\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2020

Ta có: \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\)

\(\Leftrightarrow2x-1=x-3\)

\(\Leftrightarrow2x-x=-3+1\)

\(\Leftrightarrow x=-2\)

Vậy phương trình có nghiệm x=-2

8 tháng 2 2020

\(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\)

\(\Leftrightarrow\left|2x-1\right|=\left|x-3\right|\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=x-3\\2x-1=3-x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{4}{3}\end{cases}}\)

10 tháng 3 2020

tải photomath về bn

10 tháng 3 2020

thank you nha 

9 tháng 3 2020

Tui chưa nháp nhưng câu 1 thử nhân hết ra coi triệt tiêu bớt đc ko, mà chắc chắn là nhân ra sẽ mất cái 27x^3 rồi nên thành pt bậc 2 giải vô tư nhé, câu 2 tách hết ra cx lm đc vì nó là pt bậc 2 

câu 3 tách thành (x+3)(x^2-7x+9)=0 có pt bậc 2 nên ok r

9 tháng 3 2020

(3x - 2)(9x2 + 6x + 4) - (3x - 1)(9x2 - 3x + 1) = x - 4

<=> 27x3 - 8 - 27x3 + 1 =  x - 4

<=> x - 4 = -7

<=> x = -3

Vậy S = {-3}

9(2x + 1) = 4(x - 5)2

<=> 4(x2 - 10x + 25) - 18x - 9 = 0

<=>4x2 - 40x + 100 - 18x - 9 = 0

<=> 4x2 - 58x + 91 = 0

<=> (4x2 - 58x + 210,25) - 119,25 = 0

<=> (2x - 14,5)= 119,25

<=> \(\orbr{\begin{cases}2x-14,5=\sqrt{119,25}\\2x-14,5=-\sqrt{119,25}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{29+3\sqrt{53}}{4}\\x=\frac{29-3\sqrt{53}}{4}\end{cases}}\)

Vậy S = {...}

x3 - 4x2  - 12x + 27 = 0

<=> (x3 + 3x2) - (7x2 + 21x) + (9x + 27) = 0

<=> x2(x + 3) - 7x(x + 3) + 9(x + 3) = 0

<=> (x2 - 7x + 9)(x + 3) = 0

<=> \(\orbr{\begin{cases}x-7x+9=0\\x+3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x^2-7x+12,25\right)-3,25=0\\x=-3\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x-3,5\right)^2=3,25\\x=-3\end{cases}}\)

<=> \(\orbr{\begin{cases}x-3,5=\sqrt{3,25}\\x-3,5=-\sqrt{3,25}\end{cases}}\)

hoặc x = -3

<=>  \(\orbr{\begin{cases}x=\frac{7+\sqrt{13}}{2}\\x=\frac{7-\sqrt{13}}{2}\end{cases}}\)

hoặc x = -3

Vậy S = {...}

8 tháng 3 2020

a) \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2+3x+1\right)=x-4\)

\(\Leftrightarrow\left(3x\right)^3-2^3-\left(3x^3\right)+1=x-4\)

\(\Leftrightarrow x=13\)

9(2x+1)=4(x-5)2

<=> 18x+9=4(x2-10x+25)

<=> 4x2-58x+91=0

\(\Leftrightarrow x=\frac{29\pm3\sqrt{53}}{4}\)

x3-4x2-12x+27=0

<=> (x+3)(x2-7x+9)=0

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{7\pm\sqrt{13}}{2}\end{cases}}\)

24 tháng 3 2020

\(ĐKXĐ:x\ne1;5;9\)

\(pt\Leftrightarrow\frac{2x-1}{\left(x-1\right)\left(x-5\right)}+\frac{\left(x-2\right)}{\left(x-1\right)\left(x-9\right)}=\frac{3x-12}{\left(x-9\right)\left(x+5\right)}\)

\(\Rightarrow\left(2x-1\right)\left(x-9\right)+\left(x-2\right)\left(x-9\right)=\left(3x-12\right)\left(x-1\right)\)

\(=>2x^2-x-18x+9+x^2-2x+5x-10=3x^2-12-3x+12\)

\(=>3x^2-16x-1=3x^2-15x+12\)

=>x=-13

7 tháng 1 2016

a)= \(\frac{-1}{xy}\)

b)\(\frac{3}{2x+6}\) - \(\frac{x-6}{2x^2+6x}\)\(\frac{3x}{2x\left(x+3\right)}\)\(\frac{x-6}{2x\left(x+3\right)}\)\(\frac{2x+6}{2x\left(x+3\right)}\)\(\frac{2\left(x+3\right)}{2x\left(x+3\right)}\)\(\frac{1}{x}\)

c)\(\frac{1}{xy-x^2}\)\(\frac{1}{y^2-xy}\)\(\frac{1}{x\left(x-y\right)}\)\(\frac{1}{-y\left(x-y\right)}\)\(\frac{y}{xy\left(x-y\right)}\)\(\frac{-x}{xy\left(x-y\right)}\)\(\frac{y+x}{xy\left(x-y\right)}\) 

nhớ tick nhé

mk giải từng nha == tại vì mk sợ nhiều qus bị troll 

\(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(27x^3+18x^2+12x-18x^2-12x-8-3x\left(9x^2-3x+1\right)+\left(9x^2-3x+1\right)=x-4\)

\(27x^3-8-3\left(9x^2-3x+1\right)+9x^2-3x+1=x-4\)

\(27x^3-7-3x\left(9x^2-3x+1\right)+9x^2-3x=x-4\)

\(27x^3-7-27x^3+9x^2-3x+9x^2-3x=x-4\)

\(-7+18x^2-6x=x-4\)

\(3-18x^2+7x=0\)

\(x=\frac{-7+\sqrt{265}}{-36};\frac{-7-\sqrt{265}}{-36}\)

\(9\left(2x+1\right)=4\left(x-5\right)^2\)

\(18x+9=4x^2-40x+100\)

\(18x+9-4x^2+40x-100=0\)

\(58x-91-4x^2=0\)

\(x=\frac{29-3\sqrt{53}}{4};\frac{29+3\sqrt{53}}{4}\)