K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2019

hiu hiu cho số to lm chi cho khổ !!!

A= 999993^1999-555557^1997

A= (999993^4)^499 . 999993^3 - (555557^4)^499 . 555557

Có 1 số tận cùng là 3 hoặc 7 mà mũ 4 lên sẽ tận cùng là 1

=> 555557^4 và 999993^4 tận cùng là 1 

=> (999993^4)^499 và (555557^4)^499 chia 5 dư 1

Và 999993^3 và 555557 tận cùng là 7 => chia 5 dư 2

=> (999993^4)^499 . 999993^3 và  (555557^4)^499 . 555557 đều chia 5 dư 2

=> (999993^4)^499 . 999993^3 - (555557^4)^499 . 555557 chia 5 dư 

=> A chia hết cho 5.

12 tháng 11 2019

Ta có:9999931999=9999933.(9999934)499=\(\left(\overline{...7}\right)\).\(\left(\overline{...1}\right)\)=\(\overline{...7}\)

          5555571997=555557.(5555574)499=\(\left(\overline{...7}\right)\).\(\left(\overline{...1}\right)\)=\(\overline{...7}\)

Mà \(\left(\overline{...7}\right)\)-\(\left(\overline{...7}\right)\)=\(\overline{...0}\)\(⋮\)5

Vậy 9999931999-5555571997\(⋮\)5.

11 tháng 2 2016

Cho A=\(999993^{1999}-555557^{1997}\).Ta thấy:Ta lấy từng số cuối của chúng nhân với nhau.

999993^0=1;999993^1=.............3;999993^2=..........9;999993^3=.............7.Và cuoi của chúng cứ lần lượt theo những số:1;3;9;7.Giờ ta lấy 1999:4=499 du 3

=>Chữ số tận cùng của 999993^1999=7                                         n

555557^0=1;555557^1=.........7;555557^2=............9;555557^3=............3.Và cuối của chúng cứ lần lượt theo những số:1;7;9;3.Giờ ta thấy 1997:4 du 1

=>Chữ số tận cùng của 555557^1997=7                                    m

​Từ n và m ta có thể chứng minh rằng:

999993^1999-555557^1997 .Chia hết cho 5

Bài của tớ đứng đó nhưng hơi dài dòng 1 tí.Nếu bạn tìm được người giỏi hơn thì bảo hộ làm gon đi nhé 

cho mình

 

11 tháng 2 2016

A=9999931999-5555571997

A=9999931996.9999933-5555571996.555557

A=(9999934)499.......7-(5555574)499.555557

A=...........1499........7-..........1499.555557

A=...................1........7-..............1.555557

A=..........................7-....................7

A=....................0 chia hết cho 10(đpcm)

7 tháng 4 2018

Theo bài ra ta có:

a= 11x+5

a= 13y+8

\(a+83=11x+5+83\Rightarrow a+83⋮11\)(1)

\(a+83=13y+8+83\Rightarrow a+83⋮13\)(2)

Từ (1) và (2) thì a+83 thuộc BC(11,13)

BCNN(11,13)=143

=> a+83 thuộc B(143)={0;143;286;...}

=> a thuộc {60;203;...}

Vì a là số bé nhất có 3 chữ số nên a= 203.

Vậy số cần tìm là 203.

7 tháng 4 2018

A= 9999931999-5555571997

= 999993499.4+3-555557499.4+1= 999993499.4.9999933-555557499.4.555557= (...1).(...7)-(...1).555557=(...7)-(...7)(...0) chia hết cho 5.

=> A chia hết cho 5

6 tháng 4 2017

bài này ko khó

Ta có:999993^1999=(999993^1996)*999993^3

555557^1997=(555557^1996)*55555

sau đó tách cả hai cái ra

cuối cùng,nó có chữ số tận cùng là 0,chia hết cho 5

6 tháng 1 2019

Ta có:

A=99999319995555571997A=9999931999−5555571997

A=9999931998.9999935555571996.555557A=9999931998.999993−5555571996.555557

A=(9999932)999.999993(5555572)998.555557A=(9999932)999.999993−(5555572)998.555557

A=(.....9)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯999.999993(.....1)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯.555557A=(.....9)¯999.999993−(.....1)¯.555557

A=(.....7)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(.....7)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯A=(.....7)¯−(.....7)¯

A=(.....0)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯A=(.....0)¯

Vì A có tận cùng là 0

A5⇒A⋮5 (Đpcm)

19 tháng 2 2020

ta có \(A=999993^{1999}-555557^{1997}\\ =\left(999993^{499}\right)^4.999993^3-\left(555557^{499}\right)^4.555557\\ =\left(...1\right)^4.\left(...7\right)-\left(...1\right)^4.\left(...7\right)\\ =\left(...1\right).\left(...7\right)-\left(...1\right).\left(...7\right)\\ =\left(...7\right)-\left(...7\right)=\left(...0\right)\)

vì A có tận cùng bằng 0 nên A chia hết cho 5 (đpcm)

13 tháng 2 2016

A = (999993^4.499+3)-(555557^4.499+1)

A = (999993^4.499).999993^3-(555557^4.499).555557

A = (...1).(...7)-(...1).555557

A = (...7)-(...7)

A = (...0) chia hết cho 5 

Vậy A chia hết cho 5

 

 

13 tháng 2 2016

ta có : 31999 = (34)499.3=81.499.27

=31999 có tận cùng là 7

     71997 = (74)499. 7 = 2041499 . 7 = 71997 có tận cùng là 7

Vậy A có tận cùng bằng 0 = A : 5