Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì : bz-cy/a=cx-az/b=ay-bx/c
=> a(bz-cy)/a^2=b(cx-az)/b^2=c(ay-bx)/c^2
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2
Ap dung tính chất của dãy tỉ số bằng nhau :
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2=a^2+...
= 0/a^2+b^2+c^2=0
Vì bz-cy/a=0=>bz=cy=>y/b=z/c (1)
Vì cx-az/b=0=>cx=az=>x/a=z/c (2)
Từ (1) và (2) => x/a=y/b=z/c
=>\(\frac{a.\left(bz-cy\right)}{a^2}=\frac{b.\left(cx-az\right)}{b^2}=\frac{c.\left(ay-bx\right)}{c^2}\)
=\(\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)
Theo tính chất của dãy số bằng nhau:
\(\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)
=\(\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}\)=0
=>bz-cy=0:cx-az=0
bz-cy=0=>bz=cy=>\(\frac{y}{b}=\frac{z}{c}\)
cx-az=0 => cx=az=>\(\frac{x}{a}=\frac{z}{c}\)
Vậy:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Biết: \(\frac{BZ-CY}{A}\) = \(\frac{CX-AZ}{B}\) = \(\frac{AY-BX}{C}\) (A,B,C KHÁC 0) . CHỨNG MINH RẰNG\(\frac{X}{A}\) = \(\frac{Y}{B}\) = \(\frac{Z}{C}\)
A=1-(1/2^2+1/3^2+...+1/2010^2)
A=1-(1/2*2+1/3*3+...+1/2010*2010)>1-(1/2*3+1/3*4+...+1/2010*2011)
A>1-(1/2-1/3+1/3-1/4+...+1/2010-1/2011)
A>1-(1/2-1/2011)=2013/4022>1/2010
=>A>1/2010
Sai thì em xin lỗi nhé
lấy phân số thứ nhất nhân cả tử và mẫu vs a
lấy phân số thứ 2 nhân cả tử và mẫu vs b
lấy phân số thứ 3 nhân cả tử và mẫu vs c
Áp dụng tính chất dãy tỉ số bằng nhau. cộng 3 ps sau khi nhân lại vs nhau.
đến đó tự làm
thanks con kia