\(a_1,a_2,a_3,...,a_n\text{ }\)được xác định n...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2019

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=....=\frac{a_n}{a_{n+1}}=\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\)

\(\Rightarrow\left(\frac{a_1}{a_2}\right)^n=\left(\frac{a_2}{a_3}\right)^n=....=\left(\frac{a_n}{a_{n+1}}\right)^n=\left(\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\right)^n\)(1)

Ta có: \(\left(\frac{a_1}{a_2}\right)^n=\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}....\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}....\frac{a_n}{a_{n+1}}=\frac{a_1}{a_{n+1}}\)(2)

Từ (1), (2) \(\Rightarrow\left(\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\right)^n=\frac{a_1}{a_{n+1}}\)(đpcm)

4 tháng 4 2020

\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau có:}\)

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_n}{a_{n+1}}=\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\)

\(\Rightarrow\left(\frac{a_1}{a_2}\right)^n=\left(\frac{a_2}{a_3}\right)^n=...=\left(\frac{a_n}{a_{n+1}}\right)^n\)\(=\left(\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\right)^n\)

\( \left(\frac{a_1}{a_2}\right)^n=\frac{a_1}{a_2}\cdot\frac{a_1}{a_2}\cdot...\cdot\frac{a_1}{a_2}\)\(=\frac{a_1}{a_2}\cdot\frac{a_2}{a_3}\cdot...\cdot\frac{a_n}{a_{n+1}}\)\(=\frac{a_1}{a_{n-1}}\)

\(\Rightarrow\)\(\left(\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\right)^n\)\(=\frac{a_1}{a_{n-1}}\)

8 tháng 11 2015

Đặt \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=k\)

=>\(\frac{a_1}{a_2}.\frac{a_2}{a_3}.....\frac{a_{n-1}}{a_n}.\frac{a_n}{a_1}=k.k.....k.k\)

=>\(k^n=\frac{a_1.a_2.....a_{n-1}.a_n}{a_2.a_3.....a_n.a_1}\)

=>\(k^n=1=1^n\)

=>k=1

=>\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=1\)

=>\(a_1=a_2=...=a_n\)

\(=>\frac{a^2_1+a^2_2+...+a_n^2}{\left(a_1+a_2+...+a_n\right)^2}\)

=\(\frac{a^2_1+a^2_1+...+a_1^2}{\left(a_1+a_1+...+a_1\right)^2}\)

=\(\frac{n.a^2_1}{\left(n.a_1\right)^2}=\frac{n.a_1^2}{n^2.a^2_1}=\frac{1}{n}\)

8 tháng 11 2015

thế này dc ko

Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=\frac{a_1+a_2+...+a_{n-1}+a_n}{a_2+a_3+...+a_n+a_1}\Rightarrow a_1=a_2=...=a_n\)

\(\frac{a^1_2+a^2_2+...+a^2_n}{\left(a_1+a_2+...+a_n\right)}=\frac{na^2_1}{\left(na_1\right)^2}=\frac{1}{n}\)

9 tháng 3 2020

\(\frac{a_2}{3}\) chứ bn

9 tháng 3 2020

a) Sửa lại đề \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=......=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=..........=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=\frac{a_1+a_2+......+a_{n-1}+a_n}{a_2+a_3+........+a_n+a_1}=1\)( vì \(a_1+a_2+.......+a_n\ne0\))

\(\Rightarrow a_1=a_2\)\(a_2=a_3\); ........ ; \(a_{n-1}=a_n\)\(a_n=a_1\)

\(\Rightarrow a_1=a_2=........=a_n\)( đpcm )

b) Vì \(a_1=a_2=.......=a_n\)\(\Rightarrow a_1^{10}=a_2^{10}=.......=a_n^{10}\)

Ta có: \(A=\frac{a_1^{10}+a_2^{10}+.........+a_n^{10}}{\left(a_1+a_2+.......+a_n\right)^{10}}=\frac{n.a_1^{10}}{\left(n.a_1\right)^{10}}=\frac{n.a_1^{10}}{n^{10}.a_1^{10}}=\frac{n}{n^{10}}=\frac{1}{n^9}\)

Vậy \(A=\frac{1}{n^9}\)

18 tháng 11 2018

áp dụng t.c dãy tỉ số bằng nhau ta có:

\(\frac{a1}{a2}=\frac{a2}{a3}=\frac{a3}{a4}=.....=\frac{an}{an+1}=\frac{a1+a2+a3+....+an}{a2+a3+a4+...+an+1}\)

\(\frac{a1}{a2}\cdot\frac{a2}{a3}\cdot\frac{a3}{a4}\cdot...\cdot\frac{an}{an+1}=\frac{a1}{an+1}=\left(\frac{a1}{a2}\right)^n=\left(\frac{a1+a2+a3+....+an}{a2+a3+a4+...+an+1}\right)^n\)(vì từ 1 đến n có n chữ số)

=> đpcm

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{100}}{a_1}=\frac{a_1+a_2+...+a_{100}}{a_1+a_2+...+a_{100}}=1\)\(\Rightarrow\)\(a_1=a_2=...=a_{100}\)

\(\Rightarrow\)\(M=\frac{a_1^2+a_2^2+a_3^2+...+a_{100}^2}{\left(a_1+a_2+a_3+...+a_{100}\right)^2}=\frac{100a_1^2}{100^2a_1^2}=\frac{1}{100}\)

24 tháng 4 2018

Ta có :

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_n}{a_{n+1}}=\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\)

\(\Rightarrow\)\(\frac{a_1^n}{a_2^n}=\frac{a_2^n}{a_3^n}=...=\frac{a_n^n}{a_{n+1}^n}=\frac{a_1^n+a_2^n+...+a_n^n}{a_2^n+a_3^n+...+a_{n+1}^n}=\frac{\left(a_1+a_2+...+a_n\right)^n}{\left(a_2+a_3+...+a_{n+1}\right)^n}=\frac{a_1.a_2...a_n}{a_2.a_3...a_{n+1}}=\frac{a_1}{a_{n+1}}\)