\(P=\dfrac{1}{a}+\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2021

Áp dụng BĐT BSC:

\(P=\dfrac{1}{a}+\dfrac{4}{b}+\dfrac{9}{c}\ge\dfrac{\left(1+2+3\right)^2}{a+b+c}=\dfrac{36}{1}=36\)

\(minP=36\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{6}\\b=\dfrac{1}{3}\\c=\dfrac{1}{2}\end{matrix}\right.\)

22 tháng 6 2018

\(a+b+c=2\Rightarrow ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{4}{3}\)

\(P=\dfrac{7+2b}{1+a}+\dfrac{7+2c}{1+b}+\dfrac{7+2a}{1+c}\)

\(\ge\dfrac{\left(21+2\left(a+b+c\right)\right)^2}{\left(1+a\right)\left(7+2b\right)+\left(1+b\right)\left(7+2c\right)+\left(1+c\right)\left(7+2a\right)}\)

\(=\dfrac{25^2}{21+9\left(a+b+c\right)+2\left(ab+bc+ca\right)}\ge\dfrac{25^2}{21+9.2+\dfrac{2.4}{3}}=15\)

\("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Bài 1:

Ta có:

\(\text{VT}=\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\)

\(=a-\frac{2ab^2}{a+2b^2}+b-\frac{2bc^2}{b+2c^2}+c-\frac{2ca^2}{c+2a^2}=(a+b+c)-2\left(\frac{ab^2}{a+2b^2}+\frac{bc^2}{b+2c^2}+\frac{ca^2}{c+2a^2}\right)\)

\(=3-2M(*)\)

Áp dụng BĐT Cauchy ta có:

\(M=\frac{ab^2}{a+b^2+b^2}+\frac{bc^2}{b+c^2+c^2}+\frac{ca^2}{c+a^2+a^2}\leq \frac{ab^2}{3\sqrt[3]{ab^4}}+\frac{bc^2}{3\sqrt[3]{bc^4}}+\frac{ca^2}{3\sqrt[3]{ca^4}}\)

\(\Leftrightarrow M\leq \frac{1}{3}(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2})\)

Tiếp tục áp dụng BĐT Cauchy:

\(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\leq \frac{ab+ab+1}{3}+\frac{bc+bc+1}{3}+\frac{ca+ca+1}{3}=\frac{2(ab+bc+ac)+3}{3}\)

\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\) (quen thuộc)

\(\Rightarrow M\leq \frac{1}{3}.\frac{2.3+3}{3}=1(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq 3-2.1=1\)

(đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Bài 2:

Áp dụng BĐT Cauchy -Schwarz:

\(\text{VT}=\frac{a^3}{a^2+a^2b^2}+\frac{b^3}{b^2+b^2c^2}+\frac{c^3}{c^2+a^2c^2}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2}\)

hay:

\(\text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+a^2b^2+b^2c^2+c^2a^2}(*)\)

Mặt khác, theo BĐT Cauchy ta dễ thấy:

\(a^4+b^4+c^4\geq a^2b^2+b^2c^2+c^2a^2\)

\(\Rightarrow (a^2+b^2+c^2)^2\geq 3(a^2b^2+b^2c^2+c^2a^2)\)

\(\Leftrightarrow 1\geq 3(a^2b^2+b^2c^2+c^2a^2)\Rightarrow a^2b^2+b^2c^2+c^2a^2\leq \frac{1}{3}(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+\frac{1}{3}}=\frac{3}{4}(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

12 tháng 8 2017

1) Ta c/m BĐT sau:

Với a, b > 0 thì \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì a, b > 0)

Đẳng thức xảy ra \(\Leftrightarrow a=b\)

Như vậy ta có \(\left\{{}\begin{matrix}x^3+y^3\ge xy\left(x+y\right)\\y^3+z^3\ge yz\left(y+z\right)\\z^3+x^3\ge zx\left(z+x\right)\end{matrix}\right.\)

Do đó \(VT\ge\dfrac{\sqrt{xyz+xy\left(x+y\right)}}{xy}+\dfrac{\sqrt{xyz+yz\left(y+z\right)}}{yz}+\dfrac{\sqrt{xyz+zx\left(z+x\right)}}{zx}\)

\(=\dfrac{\sqrt{xy\left(x+y+z\right)}}{xy}+\dfrac{\sqrt{yz\left(x+y+z\right)}}{yz}+\dfrac{\sqrt{zx\left(x+y+z\right)}}{zx}\)

\(=\sqrt{x+y+z}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\)

\(=\sqrt{x+y+z}.\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\)

\(=\sqrt{x+y+z}.\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

\(\ge\sqrt{3\sqrt[3]{xyz}}.3\sqrt[3]{\sqrt{xyz}}=3\sqrt{3}\)

Đẳng thức xảy ra \(\Leftrightarrow x=y=z=1\)

12 tháng 8 2017

1) Lợi dụng BĐT AM-GM cho 3 số dương, ta được:

\(\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\dfrac{\sqrt{3\sqrt[3]{x^3.y^3.1}}}{xy}=\sqrt{\dfrac{3}{xy}}\)

Tương tự:

\(\dfrac{\sqrt{1+y^3+z^3}}{yz}\ge\sqrt{\dfrac{3}{yz}}\)

\(\dfrac{\sqrt{1+x^3+z^3}}{xz}\ge\sqrt{\dfrac{3}{xz}}\)

Cộng từng vế các BĐT trên. ta được:

\(VT\ge\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)

Tiếp tục lợi dụng AM-GM, ta được

\(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\ge3\sqrt[3]{\dfrac{1}{\sqrt{xy}}.\dfrac{1}{\sqrt{yz}}.\dfrac{1}{\sqrt{xz}}}=3\)

Suy ra đpcm. Đẳng thức xảy ra khi x=y=z=1

25 tháng 11 2017

Ta có BĐT sau:\(\dfrac{1}{1-a^2}+\dfrac{1}{1-b^2}\ge\dfrac{2}{1-ab}\left(\forall a,b\in\left(0;1\right)\right)\)(*)

Cm:(*)\(\Leftrightarrow\dfrac{\left(ab+1\right)\left(a-b\right)^2}{\left(1-a^2\right)\left(1-b^2\right)\left(1-ab\right)}\ge0\)( đúng vì 0<a,b<1)

\(VT=\dfrac{1}{2}\left[\sum\dfrac{2a^2}{1-a^2}\right]=\dfrac{1}{2}\left[\sum\left(\dfrac{2a^2}{1-a^2}+2\right)\right]-3\)

\(=\dfrac{1}{2}\left[\sum\left(\dfrac{2}{1-a^2}\right)\right]-3=\dfrac{1}{2}\sum\left(\dfrac{1}{1-a^2}+\dfrac{1}{1-b^2}\right)-3\ge\dfrac{1}{2}.\sum\dfrac{2}{1-ab}-3=1\)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{2}\)

22 tháng 6 2017

a)Áp dụng BĐT AM-GM ta có:

\(\left\{{}\begin{matrix}x^2+y^2\ge2xy\\y^2+1\ge2y\end{matrix}\right.\)\(\Rightarrow x^2+2y^2+1\ge2xy+2y\)

\(\Rightarrow x^2+2y^2+3\ge2xy+2y+2\)

\(\Rightarrow\dfrac{1}{x^2+2y^2+3}\le\dfrac{1}{2\left(xy+y+1\right)}\Leftrightarrow\dfrac{2}{x^2+2y^2+3}\le\dfrac{1}{xy+y+1}\)

b)Áp dụng bổ đề trên ta có:

\(a^2+2b^2+3\ge2ab+2b+2\Rightarrow\dfrac{1}{a^2+2b^2+3}\le\dfrac{1}{2\left(ab+b+1\right)}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{1}{b^2+2c^2+3}\le\dfrac{1}{2\left(bc+b+1\right)};\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2\left(ac+c+1\right)}\)

Cộng theo vế 3 BĐT trên ta có:

\(Q\le\dfrac{1}{2\left(ab+b+1\right)}+\dfrac{1}{2\left(bc+b+1\right)}+\dfrac{1}{2\left(ac+c+1\right)}\)

\(=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+b+1}+\dfrac{1}{ac+c+1}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{a}{ac+c+1}+\dfrac{ac}{ac+c+1}+\dfrac{1}{ac+c+1}\right)\left(abc=1\right)\)

\(=\dfrac{1}{2}\left(\dfrac{ac+c+1}{ac+c+1}\right)=\dfrac{1}{2}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

11 tháng 2 2019

bạn đã trúng tà thuật đạo từ con mắt này .Nói cách khác bạn đã trúng ảo thuật ,chỉ có mình và itachi mới giải thuật được cho bạn nha!!undefined

ê bn có bthường k zậy