K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

22 tháng 5 2020

Đặt \(t=x^2+\left(3-x\right)^2\Rightarrow t\ge5\)

Mặt khác: \(t=x^2+\left(3-x\right)^2=9-2x\left(3-x\right)\Rightarrow x\left(3-x\right)=\frac{9-t}{2}\)

Ta có: \(P=\left[x^2+\left(3-x\right)^2\right]^2+4x^2\left(3-x\right)^2=t^2+4\left(\frac{9-t}{2}\right)^2\)

\(=2t^2-18t+81=2\left(t-\frac{9}{2}\right)^2+\frac{81}{2}\)

Mà \(t\ge5\Rightarrow t-\frac{9}{2}\ge\frac{1}{2}\Rightarrow P\ge2.\left(\frac{1}{2}\right)^2+\frac{81}{2}=41\)

Đẳng thức xảy ra khi \(t=5\Leftrightarrow x^2+\left(3-x\right)^2=5\Leftrightarrow x^2-3x+2\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy \(MinP=41\), đạt được khi \(x\in\left\{1;2\right\}\)

phải là tìm giá trị lớn nhất chứ

14 tháng 10 2017

Đặt \(x^2+\left(3-x\right)^2=a\ge5\)

Ta có: 

\(x\left(3-x\right)=-\frac{1}{2}\left(2x^2-6x\right)\)

\(=-\frac{1}{2}\left(x^2-6x+9+x^2-9\right)\)

\(=-\frac{1}{2}\left(x^2+\left(3-x\right)^2-9\right)=-\frac{1}{2}\left(a-9\right)\)

Áp dụng ta có: 

\(P=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2=\left(x^2+\left(3-x\right)^2\right)^2+4x^2\left(3-x\right)^2\)

\(=a^2+\left(a-9\right)^2\)

\(=2a^2-18a+81=\left(2a^2-20a+50\right)+2a+31\)

\(=2\left(a-5\right)^2+2a+31\ge0+2.5+31=41\)

16 tháng 6 2019

https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/

16 tháng 6 2019

bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo

2 tháng 1 2021

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

23 tháng 9 2019

\(P=\frac{\left(x-y\right)^2+2xy}{x-y+1}=\frac{t^2+8}{t+1}\)  (với t = x - y > 0)

\(=\frac{t^2-4t+4}{t+1}+\frac{4\left(t+1\right)}{t+1}=\frac{\left(t-2\right)^2}{t+1}+4\ge4\)

Đẳng thức xảy ra khi t = 2 -> x = y + 2 thay vào giả thiết xy = 4 tính tiếp v.v....

True?