Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
DO đo: ΔAEB\(\sim\)ΔAFC
Suy ra: AE/AF=AB/AC
hay AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
DO đó: ΔAEF\(\sim\)ΔABC
c: Xét ΔMFB và ΔMCE có
góc MFB=góc MCE
góc FMB chung
Do đó:ΔMFB\(\sim\)ΔMCE
Suy ra: MF/MC=MB/ME
hay \(MF\cdot ME=MB\cdot MC\)
a: Xet ΔBHK vuông tại K và ΔCHN vuông tại N có
góc BHK=góc CHN
=>ΔBHK đồng dạng vơi ΔCHN
b: ΔBHK đồng dạngb vơi ΔCHN
=>HB/HC=HK/HN
=>HB/HK=HC/HN
=>ΔHBC đồng dạng với ΔHKN
c: Xét ΔBMH vuông tại M và ΔBNC vuông tại N có
góc MBH chung
=>ΔBMH đồng dạng vơi ΔBNC
=>BM/BN=BH/BC
=>BH*BN=BM*BC
Xét ΔCHM vuông tại M và ΔCBK vuông tại K có
góc BCK chung
=>ΔCHM đồng dạng vơi ΔCBK
=>CH/CB=CM/CK
=>CB*CM=CH*CK
BH*BN+CH*CK
=BM*BC+CM*BC
=BC^2
Bài 2 : a) Ta có : OM // AB => \(\frac{OM}{AB}=\frac{OD}{DB}\)( Hq talet) (1)
ON // AB => \(\frac{ON}{AB}=\frac{OC}{AC}\)(2)
AB // CD => \(\frac{OD}{OB}=\frac{OC}{OA}\Rightarrow\frac{OD}{OB+OD}=\frac{OC}{OA+OC}\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\)(3)
Từ (1), (2), (3) => OM/AB = ON/AB => OM = ON
b) Ta có : ON // CD => \(\frac{ON}{CD}=\frac{OB}{DB}\)(4)
Cộng từng vế (1) và (4) ta đc : \(\frac{OM}{AB}+\frac{ON}{CD}=\frac{OD}{DB}+\frac{OB}{DB}=\frac{OD+OB}{DB}=1\)
Suy ra : \(\frac{2OM}{AB}+\frac{2ON}{CD}=2\Rightarrow\frac{MN}{AB}+\frac{MN}{CD}=2\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)
c) Để mình tính đã nha
Tham khảo:
Tìm GTNN của M=1/1-2(ab+bc+ac)+1/abc - thu phương
Cảm ơn nhiều nha nhưng mình cần cách khác í