Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\Rightarrow\frac{99}{100}=\frac{0.33.x}{2009}\)
\(\Rightarrow100.0.33.x=99.2009\)
\(\Rightarrow0x=198891\Rightarrow\)không có GT x thỏa mãn
\(C=2.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)
\(=2.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=2.\left(1-\frac{1}{100}\right)\)
\(=2.\frac{99}{100}=\frac{198}{100}\)
C = \(3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)
C = \(3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
C = 3 \(\left(1-\frac{1}{100}\right)\)
C = 3 \(\left(\frac{100}{100}-\frac{1}{100}\right)\)
C = \(3.\frac{99}{100}\)
C = \(\frac{297}{100}\)
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Còn lại thì dễ rồi bạn nhé
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+.....+\frac{1}{97.100}=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-.......+\frac{1}{97}-\frac{1}{100}\right)=\frac{1}{3}\left(1-\frac{1}{100}\right)=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)
Gọi dãy phân số trên là A
A = \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)
A = \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
A = \(1-\frac{1}{100}\)
A = \(\frac{99}{100}\)
Ta thấy: 1/1-1/4 = 3/4 = 3.(1/1.4)
1/4-1/7 = 3/28 = 3.(1/4.7)
A = 3(1/1-1/4+1/4-1/7+...+1/97-1/100)
A = 3.(1-1/100)
A = 3.(99/100)
A = 297/100
\(A=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=\frac{1}{3}.\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{3}.\frac{99}{100}\)
\(A=\frac{33}{100}\)
\(\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{97.100}\right)=\frac{0,33x}{2009}\)
\(\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)=\frac{0,33x}{2009}\)
\(\left(1-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{100}\right)=\frac{0,33x}{2009}\)
\(1-\frac{1}{100}=\frac{0,33x}{2009}\)
\(\frac{99}{100}=\frac{0,33x}{2009}\Rightarrow2009x99=0,33x\times100\)
198891:100:0,33=6027=x
\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{95\cdot98}\)
\(A=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{95\cdot98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\cdot\frac{48}{98}\)
\(A=\frac{16}{98}=\frac{8}{49}\)
\(B=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)
\(B=2\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{97\cdot100}\right)\)
\(B=2\left[\frac{1}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{97\cdot100}\right)\right]\)
\(B=2\left[\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\right]\)
\(B=2\left[\frac{1}{3}\left(1-\frac{1}{100}\right)\right]\)
\(B=2\left[\frac{1}{3}\cdot\frac{99}{100}\right]\)
\(B=2\cdot\frac{33}{100}\)
\(B=\frac{33}{50}\)
A = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
3A = 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/92.95 + 3/95.98
3A = 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/92 - 1/95 + 1/95 - 1/98
3A = 1/2 - 1/98
3A = 24/49
A = 24/49 : 3
A = 72/49
B = 2/1.4 + 2/4.7 + 2/7.10 + ... + 2/97.100
3/2B = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100
3/2B = 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/97 - 1/100
3/2B = 1 - 1/100
3/2B = 99/100
B = 99/100 : 3/2
B = 33/50
B =\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...\frac{2}{97.100}\)
=2.(\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\))
3B=2.(\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\))
3B=2.(\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\))
3B=2.(1-\(\frac{1}{100}\))
3B=2.\(\frac{99}{100}\)=\(\frac{99}{50}\)
=>B=\(\frac{99}{50}:3\)=\(\frac{33}{50}\)
Tick mik nha
=> S = \(\frac{1}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+....+\frac{1}{97.100}\right)\)
= \(\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{100}\right)\)
= \(\frac{1}{3}\left(1-\frac{1}{100}\right)=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)
\(S=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\left(1-\frac{1}{100}\right)\)
\(S=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)