Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
X+(1/1.3+1/3.5+1/5.7+...+1/99.101)=100
X+(2/1.3+2/3.5+2/5.7+...+2/99.101)=100
X+(1 -1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)=100
X+(1-1/101)=100
X+100/101=100
X=100-100/101
X=10000/101
Đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\)
\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\)
\(2A=\frac{100}{101}\)
\(A=\frac{50}{101}\)
b) \(\frac{2^{10}+3^{31}+2^{40}+3^6}{2^{11}\cdot3^{31}+2^{41}\cdot3^6}=\frac{2^{10}+2^{40}}{2^{11}+2^{41}}\)
\(\frac{2^{10}+2^{40}}{2^{11}+2^{41}}=\frac{1}{2}\)
=1/2x(1/1.3+1/3.5+...+1/99.101)
=1/2.(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)
=1/2.(1-1/101)
=1/2.100/101
=50/101
chúc bạn học tốt
a) A = \(\frac{5}{1.4}+\frac{29}{4.7}+\frac{71}{7.10}+....+\frac{10301}{100.103}\) (có 34 số hạng)
A = \(\frac{4+1}{1.4}+\frac{4.7+1}{4.7}+\frac{7.10+1}{7.10}+....+\frac{100.103+1}{103.100}\)
A = \(1+\frac{1}{1.4}+1+\frac{1}{4.7}+1+\frac{1}{7.10}+....+1+\frac{1}{100.103}\)
A = \(1.34+\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)
A = \(34+\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
A = \(34+\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
A = \(34+\frac{1}{3}\cdot\frac{102}{103}\)
A = \(34+\frac{34}{103}=\frac{3536}{103}\)
\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{99\cdot101}\)
\(=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{99\cdot101}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(=\frac{1}{2}\cdot\frac{98}{303}=\frac{49}{303}\)
\(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{2550}\)
\(=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{50\cdot51}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{50}-\frac{1}{51}\)
\(=\frac{1}{3}-\frac{1}{51}\)
\(=\frac{16}{51}\)
\(\text{Đ}\text{ặt}:A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{99.101}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(2A=1-\frac{1}{101}\)
\(A=\frac{100}{101}:2=\frac{50}{101}\)
\(\Rightarrow\frac{1}{3}x.x=\frac{50}{101}\)
\(x.\left(\frac{1}{3}.1\right)=\frac{50}{101}\)
\(x.\frac{1}{3}=\frac{50}{101}\)
$x=\frac{50}{101}:\frac{1}{3}=\frac{150}{101}$
\(.\frac{1}{3}x.x=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\frac{1}{3}xx=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(\frac{1}{3}xx=\frac{1}{2}.\left(\frac{100}{101}\right)\)
\(\frac{1}{3}xx=\frac{50}{101}\)
\(x.x=\frac{150}{101}\)
còn lại tự tính
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{1}{2}\cdot\frac{98}{99}-\frac{1}{2}\cdot\frac{49}{100}\)
\(=\frac{1}{2}\left(\frac{98}{99}-\frac{49}{100}\right)=\frac{1}{2}\cdot\frac{4949}{9900}=\frac{4949}{19800}\)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}.\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
b) \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{35.37}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{35}-\frac{1}{37}\)
\(=\frac{1}{3}-\frac{1}{37}=\frac{34}{111}\)
c) \(\frac{7}{7.9}+\frac{7}{9.11}+\frac{7}{11.13}+...+\frac{7}{99.101}\)
\(=\frac{7}{2}.\left(\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{7}{2}.\left(\frac{1}{7}-\frac{1}{101}\right)=\frac{7}{2}\cdot\frac{94}{707}=\frac{47}{101}\)
a cong tru loan nen ko hieu
b
A=5/1.4+5/4.7+..5/100.103
3/5.A=3/1.4+3/4.7+..+3/100.103
=1/1-1/4+1/4-1/7+...+1/100-1/103
=1-1/103=102/103
A=(5.102)/(3.103)=5.34/103
\(S=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)