Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+y^2+1^2-2xy-2x+2y\right)+\left(y^2+4y+2^2\right)+\left(13-1-4\right)=0\\ \)
\(\left(x-y-1\right)^2+\left(y+2\right)^2+8>0\) Bẫy hả Cái đầu không tồn tại sao có cái sau được
\(x^2-2xy+2y^2-2x+6y+5=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(-2x+2y\right)+1+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left\{\begin{matrix}x-y-1=0\\y+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
\(\Rightarrow A=\frac{3x^2y-1}{4xy}=\frac{3.\left(-1\right)^2.\left(-2\right)-1}{4.\left(-1\right).\left(-2\right)}=-\frac{7}{8}\)
\(\left(y-x+1\right)^2+\left(y+2\right)^2=0\\ \)
\(\Rightarrow\hept{\begin{cases}y=-2\\x=-1\end{cases}\Rightarrow\frac{3x^2y+1}{5xy}}=\frac{-6+1}{10}=-\frac{1}{2}\)
a) 3x2 - 6x
= 3x.x - 6x
= x(3x - 6)
b) 2xy + 2xyz
= 2xy(1+z)
c)15x2y - 9x2y2
= 3.5x2y - 3.3x2y.y
= 3x2y(5 - 3y)
d) 27x3 + 6x2
= 3.9x2.x + 3.2x2
= 3x2(9x +3)
e) 2x2(x-3) - x(x-3)
= (x-3)(2x2-x)
tìm giá trị nhỏ nhất của biểu thức
A=3x2-4xy+2y2-3x+2014
giúp mik nha mik cần gấp lắm sáng mai lộp rồi
Từ \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)
\(\Leftrightarrow\left(4x^2-4xy-4xz+y^2+2yz+z^2\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\Leftrightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
Dễ thấy: \(\left\{{}\begin{matrix}\left(2x-y-z\right)^2\ge0\\\left(y-3\right)^2\ge0\\\left(z-5\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Xảy ra khi \(\left\{{}\begin{matrix}\left(2x-y-z\right)=0\\\left(y-3\right)^2=0\\\left(z-5\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=5\end{matrix}\right.\)
Khi đó \(A=\left(4-4\right)^{2015}+\left(3-4\right)^{2015}+\left(5-4\right)^{2015}=0+1-1=0\)
2*(2*x^3*y^3-3*y-x)
nhớ
Đặt A = x2 + 2y2 + 2xy - 2x - 6y + 2015
= (x2 + y2 + 2xy) - 2x - 2y + 1 + y2 - 4y + 4 + 2010
= (x + y)2 - 2(x - y) + 1 + (y - 2)2 + 2010
= (x + y - 1)2 + (y - 2)2 + 2010 \(\ge\)2010
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy Min A = 2010 <=> x = -1 ; y = 2