K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2020

\(x^2-2xy+y^2-9z^2=\left(x-y\right)^2-\left(3z\right)^2=\left(x-y-3z\right)\left(x-y+3z\right)\)

10 tháng 11 2020

\(x^2+2xy+y^2-9z^2=\left(x^2+2xy+y^2\right)-\left(3z\right)^2\)

\(=\left(x+y\right)^2-\left(3z\right)^2=\left(x+y+3z\right)\left(x+y-3z\right)\)

16 tháng 7 2017

Bài 1 : Ta có :

x^3-x^2-7x-a x-3 x^2 x^3-3x^2 2x^2-7x-a + 2x 2x^2 -6x -x - a - 1 -x + 3

Để \(x^3-x^2-7x-a\) chia hết cho x-3 thì :

-x - a = - x + 3

<=> -x + x - a = 3

<=> a = - 3

Vậy GT của a là - 3

16 tháng 7 2017

Bài 2 :

a) \(x^2-2xy-9z^2+y^2\)

= \(\left(x^2-2xy+y^2\right)-9z^2\)

= \(\left(x-y\right)^2-\left(3z\right)^2\)

= \(\left(x-y-3z\right)\left(x-y+3z\right)\) (1)

Thay x = 6 ; y=-4 ; z= 30 vào BT (1) ta được :

\(\left(x-y-3z\right)\left(x-y+3z\right)=\left(6+4-3.30\right)\left(6+4+3.30\right)\) = (-80) .100 = -8000

Vậy tại x = 6 ; y=-4 ; z=30 thì GT của BT (1) là -8000

b) \(\left(x^3-y^3\right):\left(x^2+xy+y^2\right)\)

= \(\left(x-y\right)\left(x^2+xy+y^2\right):\left(x^2+xy+y^2\right)\)

= ( x- y ) (2)

Thay x = \(\dfrac{2}{3}v\text{à}\) y = \(\dfrac{1}{3}\) vào biểu thức (2) ta được :

\(\left(x-y\right)=\left(\dfrac{2}{3}-\dfrac{1}{3}\right)=\dfrac{1}{3}\)

Vậy tại x = \(\dfrac{2}{3}v\text{à}\) y = \(\dfrac{1}{3}\) thì GT của BT (2) là \(\dfrac{1}{3}\)

4 tháng 8 2018

\(x^2-2xy+y^2-9z^2\)

\(=\left(x-y\right)^2-\left(3z\right)^2\)

\(=\left(x-y-3z\right)\left(x-y+3z\right)\)

4 tháng 8 2018

\(x^2-2xy+y^2-9z^2\)

\(=\left(x^2-2xy+y^2\right)-9z^2\)

\(=\left(x-y\right)^2-9z^2\)

\(=\left(x-y-3z\right)\left(x-y+3z\right)\)

=.= hok tốt!!

28 tháng 1 2020

Thank you.

27 tháng 11 2015

x^2-2xy+y^2-9z^2

=(x-y)^2-9z^2

=(x-y)^2-(3z)^2

=(x-y-3z)(x-y+3z)

31 tháng 7 2019

\(A=\left(x+1\right)^2+\left(x+2\right)^2=\left(x+1\right)^2+\left(-2-x\right)^2\ge\frac{1}{2}\left(x+1-2-x\right)^2=\frac{1}{2}.1^2=\frac{1}{2}\Rightarrow A_{min}=\frac{1}{2}\Leftrightarrow x=\frac{3}{2}\)

\(B=-2x^2-4\le0-4=-4\Rightarrow B_{max}=-4\Leftrightarrow x=0\)

\(C=-5x^2+10x-7=-5x^2+10x-5-2=-5\left(x-1\right)^2-2\le0-2=-2\Rightarrow C_{min}=-2\Leftrightarrow x-1=0\Leftrightarrow x=1\)

7 tháng 10 2019

Bài 1:

a) \(25-x^2+2xy-y^2=25-\left(x^2-2xy+y^2\right)\)

\(=5^2-\left(x-y\right)^2=\left(5-x+y\right)\left(5+x-y\right)\)

b) \(18-x^2+12xz-9z^2\): không thể phân tích thành nhân tử

c) Không thể phân tích thành nhân tử.

d) \(16-x^2-2xy-y^2=4^2-\left(x^2+2xy+y^2\right)\)

\(=4^2-\left(x+y\right)^2=\left(4-x-y\right)\left(4+x+y\right)\)

e) Sử đề \(x^2+2xy+y^2-z^2-4zt-4t^2\)

\(=\left(x+y\right)^2-\left(z^2+2.z.2t+\left(2t\right)^2\right)\)

\(=\left(x+y\right)^2-\left(z+2t\right)^2=\left(x+y-z-2t\right)\left(x+y+z+2t\right)\)

f) \(x^4+4=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

g) \(x^4+64=x^4+16x^2+64-16x^2\)

\(=\left(x^2+8\right)^2-\left(4x\right)^2=\left(x^2+4x+8\right)\left(x^2-4x+8\right)\)

h) \(x^4+36x^2+324-36x^2\)

\(=\left(x^2+18\right)^2-\left(6x\right)^2=\left(x^2-6x+18\right)\left(x^2+6x+18\right)\)

1: =(4x-1)^2-3(4x-1)

=(4x-1)(4x-1-3)

=4(x-1)(4x-1)

2: =-8x^4y^5(2y+3x)

3: =(a-5)^2-4b^2

=(a-5-2b)(a-5+2b)

5: =x^2-mx-nx+mn

=x(x-m)-n(x-m)

=(x-m)(x-n)

6: =(4a^2-3a-18-4a^2-3a)(4a^2-3a-18+4a^2+3a)

=(-6a-18)(8a^2-18)

=-6(2a-3)(2x+3)(a+3)

9 tháng 11 2017

\(x^2-2xy-9z^2+y^2\)

\(=\left(x^2-2xy+y^2\right)-9z^2\)

\(=\left(x-y\right)^2-9z^2\)

\(=\left(x-y\right)^2-\left(3z\right)^2\)

\(=\left(x-y-3z\right)\left(x-y+3z\right)\)

Thay \(x=6;y=-4;z=30\),ta được:

\(\left[6-\left(-4\right)-3.30\right].\left[6-\left(-4\right)+3.30\right]\)

\(=\left(10-90\right)\left(10+90\right)\)

\(=-80.100=-8000\)

ĐS: =8000

27 tháng 9 2017

\(a,2x^2-2xt-5x+5y\)

\(=\left(2x^2-5x\right)-\left(2xy-5y\right)\)

\(=x\left(2x-5\right)-y\left(2x-5\right)\)

\(=\left(2x-5\right)\left(x-y\right)\)

\(b,8x^2+4xy-2ax-ay\)

\(=\left(8x^2-2ax\right)+\left(4xy-ay\right)\)

\(=2x\left(4x-a\right)+y\left(4x-a\right)\)

\(=\left(4x-a\right)\left(2x+y\right)\)

\(c,x^3-4x^2+4x\)

\(=x^3-2x^2-2x^2+4x\)

\(=\left(x^3-2x^2\right)-\left(2x^2-4x\right)\)

\(=x^2\left(x-2\right)-2x\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x-2\right)\)

\(=x\left(x-2\right)^2\)

\(d,2xy-x^2-y^2+16\)

\(=-\left(x^2-2xy+y^2-16\right)\)

\(=-\left[\left(x-y\right)^2-4^2\right]\)

\(=-\left(x-y-4\right)\left(x-y+4\right)\)

\(e,x^2-y^2-2yz-z^2\)

\(=x^2-\left(y^2+2yz+z^2\right)\)

\(=x^2-\left(y+z\right)^2=\left(x-y-z\right)\left(x+y+z\right)\)