Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
căn (40-x)=a , căn (45-x)=b,căn(72-x)=c (a,b,c >=0 )
đưa về hệ: ab+bc+ca=40-a^2 -> ab+bc+ca+a^2=40
ab+bc+ca=45-b^2......
ab+bc+ca=72-c^2.....
đến đó ok rồi
22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
\(A=\sqrt{80}+\sqrt{45}+\sqrt{5}=\sqrt{16.5}+\sqrt{9.5}+\sqrt{5}\)
\(=4\sqrt{5}+3\sqrt{5}+\sqrt{5}=8\sqrt{5}\)
\(B=\frac{5}{\sqrt{10}}+3,5\sqrt{40}=\sqrt{\frac{25}{10}}+3,5\sqrt{16.2,5}\)
\(=\sqrt{2,5}+3,5.4\sqrt{2,5}=15\sqrt{2,5}\)
\(C=\frac{1}{\sqrt{3}-2}+\frac{\sqrt{300}}{10}-\sqrt{12}\)
\(=\frac{\sqrt{3}+2}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+\frac{\sqrt{100.3}}{10}-\sqrt{4.3}\)
\(=-\sqrt{3}-2+\sqrt{3}-2\sqrt{3}=-2\sqrt{3}-2\)
\(D=4\sqrt{x}+2\sqrt{x^2}-\sqrt{16x}=4\sqrt{x}+2x-4\sqrt{x}=2x\) ( do \(x\ge0\))
\(F=\frac{a-2\sqrt{a}}{\sqrt{a}-2}=\frac{\sqrt{a}.\left(\sqrt{a}-2\right)}{\sqrt{a}-2}=\sqrt{a}\)
mk chỉnh đề
\(E=\sqrt{25x+25}-\sqrt{9x+9}+\sqrt{4x+4}\)
\(=\sqrt{25\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}\)
\(=5\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}=4\sqrt{x+1}\)
\(G=\frac{2}{\sqrt{3}+\sqrt{5}}-\frac{2}{\sqrt{5}-\sqrt{7}}=\frac{2\left(\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}-\frac{2\left(\sqrt{5}+\sqrt{7}\right)}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{5}-\sqrt{7}\right)}\)
\(=\sqrt{3}-\sqrt{5}-\sqrt{5}-\sqrt{7}=\sqrt{3}-\sqrt{7}\)
Lời giải:
a) ĐK: $x\geq 2$
PT $\Leftrightarrow \sqrt{36(x-2)}-15\sqrt{\frac{1}{25}.(x-2)}=4(5+\sqrt{x-2})$
$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$
$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)
Vậy pt vô nghiệm.
b) ĐK: $x\geq \frac{1}{2}$
PT $\Leftrightarrow \sqrt{2x-2\sqrt{2x-1}}=2$
$\Leftrightarrow \sqrt{(2x-1)-2\sqrt{2x-1}+1}=2$
$\Leftrightarrow \sqrt{(\sqrt{2x-1}-1)^2}=2$
$\Leftrightarrow |\sqrt{2x-1}-1|=2$
$\Leftrightarrow \sqrt{2x-1}-1=\pm 2$
$\Leftrightarrow \sqrt{2x-1}=3$ (chọn) hoặc $\sqrt{2x-1}=-1$
$\Rightarrow x=5$ (thỏa mãn)
3.
PT \(\left\{\begin{matrix} x+2\geq 0\\ 3x^2=(x+2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ 2x^2-4x-4=0\end{matrix}\right.\Rightarrow x=1\pm \sqrt{3}\)
Lời giải:
a) ĐK: $x\geq 2$
PT $\Leftrightarrow \sqrt{36(x-2)}-15\sqrt{\frac{1}{25}.(x-2)}=4(5+\sqrt{x-2})$
$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$
$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)
Vậy pt vô nghiệm.
b) ĐK: $x\geq \frac{1}{2}$
PT $\Leftrightarrow \sqrt{2x-2\sqrt{2x-1}}=2$
$\Leftrightarrow \sqrt{(2x-1)-2\sqrt{2x-1}+1}=2$
$\Leftrightarrow \sqrt{(\sqrt{2x-1}-1)^2}=2$
$\Leftrightarrow |\sqrt{2x-1}-1|=2$
$\Leftrightarrow \sqrt{2x-1}-1=\pm 2$
$\Leftrightarrow \sqrt{2x-1}=3$ (chọn) hoặc $\sqrt{2x-1}=-1$
$\Rightarrow x=5$ (thỏa mãn)
3.
PT \(\left\{\begin{matrix} x+2\geq 0\\ 3x^2=(x+2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ 2x^2-4x-4=0\end{matrix}\right.\Rightarrow x=1\pm \sqrt{3}\)
Bài 1:
a, \(4\sqrt{3+2\sqrt{2}}-\sqrt{57+40\sqrt{2}}\)
\(=4\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(4\sqrt{2}+5\right)^2}\)
\(=4\left(\sqrt{2}+1\right)-4\sqrt{2}-5\)
\(=4\sqrt{2}+4-4\sqrt{2}-5=-1\)
b, \(B=\sqrt{1100}-7\sqrt{44}+2\sqrt{176}-\sqrt{1331}\)
\(=10\sqrt{11}-14\sqrt{11}+8\sqrt{11}-11\sqrt{11}=-7\sqrt{11}\)
c, \(C=\sqrt{\left(1-\sqrt{2002}\right)^2}.\sqrt{2003+2\sqrt{2002}}\)
\(=\left(1-\sqrt{2002}\right).\sqrt{\left(\sqrt{2002}+1\right)^2}\)
\(=\left(1-\sqrt{2002}\right).\left(\sqrt{2002}+1\right)=-2001\)
Câu d bạn kiểm tra lại đề bài nhé.
Bài 2:
\(A=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{2}+2}+\frac{\sqrt{x}}{1-x}\)
a, ĐK: \(x\ge0,x\ne1\)
b, ĐK: \(x\ge0,x\ne1\)
\(A=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{2}+2}+\frac{\sqrt{x}}{1-x}\)
\(=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{2}+2}-\frac{\sqrt{x}}{x-1}\)
\(=\frac{1}{2\left(\sqrt{x}-1\right)}-\frac{1}{2\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}}{x-1}\)
\(=\frac{2\sqrt{x}+2-2\sqrt{x}+2}{4\left(x-1\right)}-\frac{\sqrt{x}}{x-1}\)
\(=\frac{4-4\sqrt{x}}{4\left(x-1\right)}=\frac{4\left(1-\sqrt{x}\right)}{4\left(1-x\right)}=\frac{1-\sqrt{x}}{1-x}\)
Thay \(x=3\left(TM\right)\)vào A ta có: \(A=\frac{1-\sqrt{3}}{3-1}=\frac{1-\sqrt{3}}{2}\)
Vậy với \(x=3\)thì \(A=\frac{1-\sqrt{3}}{2}\)
c, \(\left|A\right|=\frac{1}{2}\Leftrightarrow\orbr{\begin{cases}A=\frac{1}{2}\\A=-\frac{1}{2}\end{cases}}\)
TH1: \(A=\frac{1}{2}\)\(\Leftrightarrow\frac{1-\sqrt{x}}{x-1}=\frac{1}{2}\Leftrightarrow2-2\sqrt{x}=x-1\)\(\Leftrightarrow x-1-2+2\sqrt{x}=0\)\(\Leftrightarrow x+2\sqrt{x}-3=0\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(TM\right)\\\sqrt{x}=-3\left(L\right)\end{cases}}}\)
TH2: \(A=-\frac{1}{2}\Leftrightarrow\frac{1-\sqrt{x}}{x-1}=-\frac{1}{2}\)\(\Leftrightarrow2-2\sqrt{x}=1-x\Leftrightarrow-x+1-2+2\sqrt{x}=0\)\(\Leftrightarrow-x-1+2\sqrt{x}=0\Leftrightarrow x-2\sqrt{x}+1=0\)\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=0\Leftrightarrow\sqrt{x}=-1\left(L\right)\)
Vậy với \(x=1\)thì \(\left|A\right|=\frac{1}{2}\)