Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3-2\right)\)
\(\Rightarrow A=\left(x^3+8\right)-\left(x^3-2\right)\)
\(\Rightarrow A=x^3+8-x^3+2\)
\(\Rightarrow A=\left(x^3-x^3\right)+\left(8+2\right)\)
\(\Rightarrow A=10\)
\(A=\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3-2\right)\)
\(=x^3+8-x^3+2\)
\(=10\)
\(B=\left(x+2\right)\left(x-2\right)\left(x^2+2x+4\right)\left(x^2-2x+4\right)\)
\(=\left(x+2\right)\left(x^2-2x+4\right)\left(x-2\right)\left(x^2+2x+4\right)\)
\(=\left(x^3+8\right)\left(x^3-8\right)\)
\(=x^6-64\)
\(C=\left(x^2+3x+1\right)^2+\left(3x-1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)\)
\(=\left(x^2+3x+1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(x^2+3x+1-3x+1\right)^2\)
\(=\left(x^2+2\right)^2\)
\(D=\left(3x^3+3x+1\right)\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
\(=\left(3x^3+1+3x\right)\left(3x^3+1-3x\right)-\left(3x^3+1\right)^2\)
\(=\left(3x^3+1\right)^2-9x^2-\left(3x^3+1\right)^2\)
\(=-9x^2\)
\(E=\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)-\left(2x^2+1\right)^2\)
\(=\left(2x^2+1+2x\right)\left(2x^2+1-2x\right)-\left(2x^2+1\right)^2\)
\(=\left(2x^2+1\right)^2-4x^2-\left(2x^2+1\right)^2\)
\(=-4x^2\)
a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)
\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)
\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)
\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)
\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)
\(\Leftrightarrow-25x=-13\)
\(\Leftrightarrow x=\dfrac{13}{25}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)
a\(\left(x+2\right)\cdot\left(x^2-2x+4\right)=x^3-2x^2+4x+2x^2-4x+8=x^3+8\)
b.\(\left(3x^4-2x^2+4x-2\right):\left(2x+2\right)=1.5x^3+1.5x^4-x-x^2+2-1=1.5x^4+1.5x^3-x^2-x+1\)
f.\(x^2+13x+22=\left(x+2\right)\cdot\left(x+11\right)=>x=-2hoacx=-11\)
mình chỉ làm dc thế thôi bạn qua fl +like instagram của mk dc k _cpo.04_ mình mới lập
e: =>x^2(x-4)+16x-64+a+64 chia hết cho x-4
=>a+64=0
=>a=-64
g: =(x-4)(x+4)+(x+4)^2
=(x+4)(x-4+x+4)
=2x(x+4)
d: \(=\dfrac{2x^2-4x+4x-8-42}{x-2}=2x+4+\dfrac{-42}{x-2}\)
a: \(\left(3x-1\right)^2-\left(x+3\right)^3=\left(2-x\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow9x^2-6x+1-x^3-9x^2-27x-27=8-x^3\)
\(\Leftrightarrow-x^3-33x-26-8+x^3=0\)
=>-33x=34
hay x=-34/33
b: \(\left(x+1\right)\left(x-1\right)\left(x^2+1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow x^4-1-x^4+2x^2-1=2\)
\(\Leftrightarrow2x^2=4\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
c: \(x^2-2\sqrt{3}x+3=0\)
\(\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\)
hay \(x=\sqrt{3}\)
d: \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)-\left(x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}-x+\sqrt{2}\right)=0\)
\(\Leftrightarrow x-\sqrt{2}=0\)
hay \(x=\sqrt{2}\)
1,\(2x\left(x-5\right)-\left(x-2\right)^2-\left(x+3\right)\left(x-3\right)\)
\(=2x^2-10x-x^2+4x-4-x^2+9\)
\(=\left(2x^2-x^2-x^2\right)+\left(-10x+4x\right)+\left(-4+9\right)\)
\(=-6x+5\)
2,\(\left(x+1\right)^2-3\left(x-5\right)\left(x+5\right)-\left(2x-1\right)^2\)
\(=x^2+2x+1-3\left(x^2-25\right)-\left(4x^2-4x+1\right)\)
\(=x^2+2x+1-3x^2+75-4x^2+4x-1\)
\(=-6x^2+6x+75\)
3,\(\left(x-1\right)^3-\left(x-3\right)\left(x^2+3x+9\right)\)
\(=\left(x-1\right)^3-\left(x^3-27\right)\)
\(=x^3-3x^2+3x-1-x^3+27\)
\(=-3x^2+3x+26\)
4,\(\left(x+5\right)\left(x^2-5x+25\right)-\left(x+2\right)^3\)
\(=\left(x^3+125\right)-\left(x^3+6x^2+12x+8\right)\)
\(=x^3+125-x^3-6x^2-12x-8\)
\(=-6x^2-12x+117\)
5,\(2x\left(x-7\right)-\left(x+3\right)\left(x-2\right)^2+\left(x+1\right)^2\)
\(=2x^2-14x-\left(x+3\right)\left(x^2-4x+4\right)+x^2+2x+1\)
=\(2x^2-14x-x^3+4x^2-4x-3x^2+12x-12+x^2+2x+1\)
\(=-x^3+4x^2-4x+1\)
6,\(\left(2x+5\right)\left(x-3\right)-\left(x+5\right)\left(x-1\right)-\left(x-4\right)^2\)
\(=2x^2-6x+5x-15-x^2+x-5x+5-x^2+8x-16\)
\(=3x-26\)
7,\(\left(x+5\right)\left(x-5\right)\left(x+2\right)-\left(x+2\right)^3\)
=\(\left(x^2-25\right)\left(x+2\right)-x^3-6x^2-12x-8\)
\(=x^3+2x^2-25x-50-x^3-6x^2-12x-8\)
\(=-4x^2-27x-58\)
Nếu đúng thì tick cho mk nha ^_^
\(a\)) \(-2,5ab\left(-2a^2+3b^2\right)=5a^3b-7,5ab^3\)
b) \(-2x^3\left(3x+0,5x^2-7x^3-2\right)\)
\(=-6x^4-1x^5+14x^6+4x^3\)
c/ \(\left(x^3-2x^2+3x-5\right)\left(-xy\right)\)
\(=-x^4y+2x^3y-3x^2y+5xy\)
d/ \(\left(-\dfrac{1}{2}x^2y\right)\left(3x^3-\dfrac{2}{7}x^2-\dfrac{4}{5}x+8\right)\)
\(=-\dfrac{3}{2}x^5y+\dfrac{1}{7}x^4y+\dfrac{2}{5}x^3y-4x^2y\)
\(-2,5ab\left(-2a^2+3b^2\right)=5a^3b-7,5ab^3\)
\(-2x^3\left(3x+0,5x^2-7x^3-2\right)=-6x^4-x^5+14x^6+4x^3\)
\(\left(x^3-2x^2+3x-5\right)\left(-xy\right)=-x^4y+2x^3y-3x^2y+5xy\)
\(\left(\dfrac{1}{2}x^2y\right)\left(3x^3-\dfrac{2}{7}x^2-\dfrac{4}{5}x+8\right)\)
\(=\dfrac{-3}{2}x^5y+\dfrac{1}{7}x^4y+\dfrac{2}{5}x^3y-4x^2y\)
Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Ta có: \(\left(x^2-3x+3\right)\left(x^2-2x+3\right)=2x^2\)
\(\Leftrightarrow\left(x^2+3\right)^2-5x\left(x^2+3\right)+6x^2-2x^2=0\)
\(\Leftrightarrow\left(x^2+3\right)^2-5x\left(x^2+3\right)+4x^2=0\)
\(\Leftrightarrow\left(x^2+3\right)^2-x\left(x^2+3\right)-4x\left(x^2+3\right)+4x^2=0\)
\(\Leftrightarrow\left(x^2+3\right)\left(x^2-x+3\right)-4x\left(x^2-x+3\right)=0\)
\(\Leftrightarrow\left(x^2-x+3\right)\left(x^2-4x+3\right)=0\)
mà \(x^2-x+3>0\forall x\)
nên \(x^2-4x+3=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy: S={1;3}