K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

Xét hệ x − ( m − 2 ) y = 2 ( m − 1 ) x − 2 y = m − 5

⇔ ( m − 2 ) y = x − 2 2 y = ( m − 1 ) x − m + 5 ⇔ ( m − 2 ) y = x − 2 y = m − 1 2 x − m 2 + 5 2

TH1: Với m – 2 = 0 ⇔ m = 2 ta có hệ 0. y = x − 2 y = 1 2 x + 3 2 ⇔ x = 2 y = 1 2 x + 3 2

Nhận thấy hệ này có nghiệm duy nhất vì hai đường thẳng x = 2 và y = 1 2 x + 3 2 cắt nhau

TH2: Với m – 2 ≠ 0m ≠ 2 ta có hệ: ( m − 2 ) y = x − 2 y = m − 1 2 x − m 2 + 5 2 ⇔ y = 1 m − 2 x − 2 m − 2 y = m − 1 2 x − m 2 + 5 2

 

Để hệ phương trình đã cho có nghiệm duy nhất thì hai đường thẳng: d : y = 1 m − 2 x − 2 m − 2 và d ' : y = m − 1 2 x − m 2 + 5 2 cắt nhau

⇔ 1 m − 2 ≠ m − 1 2 ⇔ m   –   1 m   –   2 ≠ 2 ⇔   m 2 – 3 m + 2 ≠ 2   ⇔ m 2 – 3 m   0

Suy ra m ≠ {0; 2; 3}

Kết hợp cả TH1 và TH2 ta có m ≠ {0; 3}

Vậy hệ phương trình đã cho có nghiệm duy nhất khi m ≠ {0; 3}

Đáp án: C

4 tháng 1 2018

với m = 0 \Rightarrow ∫y=104x=4∫x=4y=104

với m khác 0 \Rightarrow ∫x+my=4mx+4y=10−m∫mx+4y=10−mx+my=4

\Leftrightarrow ∫y=5m+2x=−m+8m+2∫x=−m+8m+2y=5m+2

b. vì x >0 , y>0 \Rightarrow ∫y=5m+2>0x=−m+8m+2>0∫x=−m+8m+2>0y=5m+2>0

\Rightarrow ∫−m+8>0m+2>0∫m+2>0−m+8>0

\Rightarrow ∫m<8m>−2∫m>−2m<8

\Rightarrow -2<m<8 

\Rightarrow m ={ -1;0;1;2;3;4;5;6;7}

c, y = −m+8m+2−m+8m+2 = -1 + 10m+210m+2

hệ có nghiệm x.y nguyên dương \Leftrightarrow m+2 là ước nguyên dương của 5 

\Leftrightarrow m+2 = 1 ; 5

m+2 = 1 \Rightarrow m = -1

m+2 = 5 \Rightarrow m =3

20 tháng 1 2018

ở câu c sao y lại bằng như vậy

23 tháng 3 2020

a) Thay m vào phương trình, ta có:

\(\hept{\begin{cases}\sqrt{2}\times x+4y=10-\sqrt{2}\\x+\sqrt{2}\times y=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+4y=10-\sqrt{2}\\x=6-\sqrt{2}y\end{cases}}\)

Thay giá trị đã có của x vào phương trình

\(\sqrt{2}\times\left(6-\sqrt{2}y\right)+4y=10-\sqrt{2}\)

\(\Rightarrow y=5-\frac{7\sqrt{2}}{2}\)

Thay giá trị của y vào phương trình:

\(x=6-\sqrt{2}\times\left(5-\frac{7\sqrt{2}}{2}\right)\)

\(\Rightarrow x=13-5\sqrt{2}\)

10 tháng 2 2021

a, tự làm 

b,\(\hept{\begin{cases}x-my=0\\mx-y=m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=my\\m^2y-y=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=my\\y\left(m^2-1\right)\left(1\right)\end{cases}}\)

để hpt có nghiệm duy nhất =>pt(1) có nghiệm duy nhất =>\(m^2-1\ne0\Rightarrow m\ne\pm1\)

c, \(\Rightarrow\hept{\begin{cases}x=my\\y=\frac{m+1}{m^2-1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m}{m-1}\\y=\frac{1}{m-1}\end{cases}}\)

để x>0,y>0 =>\(\hept{\begin{cases}\frac{m}{m-1}>0\\\frac{1}{m-1>0}\end{cases}}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}m< 0\\m>1\end{cases}}\\m>0\end{cases}}\Rightarrow m>0\)

d,để x+2y=1=>\(\frac{m}{m-1}+\frac{2}{m-1}=1\Leftrightarrow m+2=m-1\)

\(\Leftrightarrow0m=-3\)(vô lí)

e,ta có x+y=\(\frac{m}{m-1}+\frac{1}{m-1}=\frac{m+1}{m-1}=1+\frac{2}{m-1}\)(lưu ý chỉ làm đc với m\(\inℤ\))

để\(1+\frac{2}{m-1}\inℤ\Rightarrow m-1\inư\left(2\right)\)

\(\Rightarrow m-1\in\left\{\pm1;\pm2\right\}\Rightarrow m\in\left\{3;2;0\right\}\)

Bài 4:Cho hệ phương trình :\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\) a)Giải hệ và biện luận hệ theo m b)Với giá trị nguyên nào của m thì hệ phương trình có nghiệm duy nhất.X>0 ;Y<0 c)Xác định m để hệ có nghiệm duy nhất x,y mà P=\(x^2+y^2\) đạt giá trị nhỏ nhất d)Xác định m để hệ có nghiệm duy nhất ,thỏa mãn \(x^2+2y=0\) e)Xác định m để hệ có nghiệm duy nhất...
Đọc tiếp

Bài 4:Cho hệ phương trình :\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)

a)Giải hệ và biện luận hệ theo m

b)Với giá trị nguyên nào của m thì hệ phương trình có nghiệm duy nhất.X>0 ;Y<0

c)Xác định m để hệ có nghiệm duy nhất x,y mà P=\(x^2+y^2\) đạt giá trị nhỏ nhất

d)Xác định m để hệ có nghiệm duy nhất ,thỏa mãn \(x^2+2y=0\)
e)Xác định m để hệ có nghiệm duy nhất x,y sao cho m có tọa độ x,y nằm trên parapol \(y=-0,5x^2\)
f)Chứng minh rằng hệ có nghiệm duy nhất x,y thì điểm n có tọa độ x,y luôn nằm treen1 đường thẳng cố định khi m nhận các giá trị khác nhau
Bài 5:Cho hệ phương trình:\(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
a)Giải hệ phương trình khi m=2

b)tìm m để hệ có nghiệm duy nhất x,y mà S=x-y đạt giá trị lớn nhất

1
18 tháng 6 2020

\(\left\{{}\begin{matrix}x+2y=2\\2x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\x+2y=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\)

4 tháng 6 2017
  1. \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-m^2+1=1>0\)vậy phương trình luôn có hai nghiệm với mọi \(m\ne1\)
  2. Theo viet ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m+1\end{cases}}\)\(\Rightarrow m+1=5\Rightarrow m=4\Rightarrow x_1+x_2=2m=2.4=8\)
  3. từ hệ thức viet ta khử m được hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc m: thấy \(x_1+x_2-2x_2x_1=2m-2\left(m+1\right)=-2\)
  4. \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\frac{5}{2}\)\(\Leftrightarrow\frac{4m^2-2m-2}{m+1}=-\frac{5}{2}\Rightarrow8m^2-4m-4=-5m-5\left(m\ne-1\right)\)\(\Leftrightarrow8m^2+m+1=0\left(vn\right)\)không có giá trị nào của m thỏa mãn
bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữbài 2: 1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đób) tìm a để hệ phương...
Đọc tiếp

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ

bài 2: 

1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó

b) tìm a để hệ phương trình vô nghiệm

2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a

b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1

c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên

bài 3:

1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)

2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm

 

 

0
5 tháng 2 2018

4.

(1) => y=2m-mx thay vào (2) ta được x+m(2m-mx)=m+1

<=> x-m2x=-2m2+m+1

<=> x(1-m)(1+m)=-(m-1)(1+2m)

với m=-1 thì pt vô nghiệm

với m=1 thì pt vô số nghiệm => có nghiệm nguyên => chọn

với m\(\ne\pm\) 1 thì x=\(\frac{-2m-1}{m+1}\)=\(-2+\frac{1}{m+1}\)

=> y=2m-mx=xm-m(-2+\(\frac{1}{m+1}\)) =2m+2m-\(\frac{m}{m+1}\)=4m-1+\(\frac{1}{m+1}\)

để x y nguyên thì \(\frac{1}{m+1}\)nguyên ( do m nguyên)

=> m+1\(\in\)Ư(1)={1;-1}

=> m\(\in\){0;-2} mà m nguyên âm nên m=-2 

vậy m=-2 thì ...
P/s hình như 1 2 3 sai đề

8 tháng 2 2018

Phương trình Câu 3 là \(x^4-2x^2+m-1\) ạ hihi