Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)=g(x)
<=>(a+4)x3-4x2-4x+8=x3-4bx2-4x+c-3
Đồng nhất thức ta được
a+4=1 a=-3
-4=-4b <=> b=1
8=c-3 c=11
2: Ta có: |x-1|+|x-2|=5(1)
Trường hợp 1: x<1
(1) trở thành 1-x+2-x=5
=>-2x+3=5
=>-2x=2
hay x=-1(nhận)
Trường hợp 2: 1<=x<2
(1) trở thành x-1+2-x=5
=>1=5(vô lý)
Trường hợp 3: x>=2
(1) trở thành x-1+x-2=5
=>2x-3=5
hay x=4(nhận)
3: |x-3|+|x+1|=10(2)
Trường hợp 1: x<-1
(2) trở thành -x-1+3-x=10
=>-2x+2=10
=>-2x=8
hay x=-4(nhận)
Trường hợp 2: -1<=x<3
(2) trở thành x+1+3-x=10
=>4=10(vô lý)
Trường hợp 3: x>=3
(2) trở thành x-3+x+1=10
=>2x-2=10
hay x=6(nhận)
a: \(B=\left|2-x\right|+1.5>=1.5\)
Dấu '=' xảy ra khi x=2
b: \(B=-5\left|1-4x\right|-1\le-1\)
Dấu '=' xảy ra khi x=1/4
g: \(C=x^2+\left|y-2\right|-5>=-5\)
Dấu '=' xảy ra khi x=0 và y=2
1: =>3x+2=x+1 hoặc 3x+2=-x-1
=>2x=-1 hoặc 4x=-3
=>x=-1/2 hoặc x=-3/4
2: =>|x+2|(|x|-1|)=0
=>x=-2; x=1; x=-1
3: \(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(2x+3+x+1\right)\left(2x+3-x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(3x+4\right)\left(x+2\right)=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Bỏ | | đi và giải bình thường (vì x>0)
dễ chỉ có 2TH thôi