Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(125^3+\left(\frac{1}{5}y\right)^3=\left(5x\right)^3+\left(\frac{1}{5}y\right)^3=\left(5x+\frac{1}{5}y\right)\left(25x^2-xy+\frac{1}{25}y^2\right)\)
\(\left(x^2+\frac{1}{x}+\frac{1}{9}\right)\left(x-\frac{1}{3}\right)-\left(x-\frac{1}{3}\right)^3\)
\(=\left[x^3-\left(\frac{1}{3}\right)^3\right]-\left(x-\frac{1}{3}\right)^3\)
\(=\left(x-\frac{1}{3}\right)^3-\left(x-\frac{1}{3}\right)^3\)
\(=\left(x-\frac{1}{3}\right)\left[x^2+\frac{1}{x}+\frac{1}{9}-\left(x-\frac{1}{3}\right)^2\right]\)
\(=\left(x-\frac{1}{3}\right)\left(\frac{1}{x}+\frac{2x}{3}\right)\)
\(=\frac{3x-1}{3}\times\frac{3+2x^2}{3x}\)
\(=\frac{9x+6x^2-3-2x^2}{9x}\)
\(=\frac{4x^2+9x-3}{9x}\)
\(x^2y^4+2xy^2+1=\left(xy^2\right)^2+2.xy^2.1+1^2=\left(xy^2+1\right)^2\)
Áp dụng hằng đẳng thức thứ nhất: \(\left(a+b\right)^2=a^2+2ab+b^2\)
\(2xy^2+x^2y^4+1\)
\(=\left(xy^2\right)^2+2xy^2+1\)
\(=\left(xy^2+1\right)^2\)
\(S=1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2\)
\(=\left[\dfrac{n\left(n+1\right)}{2}\right]^2=\dfrac{n^2\cdot\left(n+1\right)^2}{4}\)
a) \(A=\left(x^2-10x+25\right)\)\(-28\)
\(A=\left(x-5\right)^2-28\)\(>=\)-28
MinA = -28 <=> x-5=0 <=> x=5
b)\(B=-\left(x^2+2x+1\right)+6\)
\(B=-\left(x+1\right)^2+6\)\(< =\)6
MaxB = 6 <=> x+1=0 <=> x=-1
c)\(C=-5\left(x^2-\frac{6}{5}x+\frac{9}{25}\right)-\frac{26}{5}\)
\(C=-5\left(x-\frac{3}{5}\right)^2-\frac{26}{5}\)\(< =-\frac{26}{5}\)
MaxC = \(-\frac{26}{5}\)<=> \(x-\frac{3}{5}=0\)<=> x=\(\frac{3}{5}\)
d)\(D=-3\left(x^2+\frac{1}{3}x+\frac{1}{36}\right)+\frac{61}{12}\)
\(D=-3\left(x+\frac{1}{6}\right)^2+\frac{61}{12}\)\(< =\frac{61}{12}\)
MacD = \(\frac{61}{12}\)<=> \(x+\frac{1}{6}=0\)<=> \(x=\frac{-1}{6}\)
Đúng thì nhớ tích cho minh nha
\(\left(3x^2-x-1\right)\left(3x^2+x-1\right)\)
\(=\left(3x^2-1\right)^2-x^2\)
\(=9x^4-6x^2+1-x^2\)
\(=9x^4-7x^2+1\)
1) \(4x^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
2) \(8x^3-27=\left(2x-3\right)\left(4x^2+6x+9\right)\)
3) \(x^3+27y^3=\left(x+3y\right)\left(x^2-3xy+9y^2\right)\)
4) \(x^2-25y^2=\left(x-5y\right)\left(x+5y\right)\)
5) \(8x^3+\frac{1}{27}=\left(2x+\frac{1}{3}\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)\)
\(9-x^2-6x=-\left(9+x^2+6x\right)=-\left(x^2+2.3x+3^2\right)=-\left(x+3\right)^2\)
\(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=\left(x+2\right)3x\)
TL:
\(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(=\left(2x+1+x-1\right)\left(2x+1-x+1\right)\)
\(=3x.\left(x+2\right)\)
x^5-1
=(x-1)(x^4+x^3+x^2+x+1).