\(x^2-4xy+4y^2-x+2y\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2020

\(x^2-4xy+4y^2-x+2y\)

\(=\left(x^2-4xy+4y^2\right)-\left(x-2y\right)\)

\(=\left(x-2y\right)^2-\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x-2y-1\right)\)

28 tháng 10 2020

\(=\left(x-2y\right)^2-\left(x-2y\right)=\left(x-2y-1\right)\left(x-2y\right)\)

18 tháng 11 2018

a/ \(4x^2+2y^2-4xy+4x-2y+5=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+2\left(2x-y\right)+1+4=0\)

\(\Leftrightarrow\left(2x-y\right)^2+2\left(2x-y\right)+1+4=0\)

\(\Leftrightarrow\left(2x-y+1\right)^2+4=0\)

Với mọi x, y ta có :

\(\left(2x-y+1\right)^2\ge0\Leftrightarrow\left(2x-y+1\right)^2+4>0\)

\(\Leftrightarrow pt\) vô nghiệm

\(=\dfrac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\cdot\dfrac{\left(x-2y\right)^2}{-\left(x-2y\right)\left(x+2y\right)}:\dfrac{5x^2y-10xy^2}{x^3+6x^2y+12xy^3+8y^3}\)

\(=\dfrac{-2x\left(x-2y\right)^2}{\left(x+2y\right)^3}\cdot\dfrac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}\)

\(=\dfrac{-2x\cdot\left(x-2y\right)}{5xy}=\dfrac{-2\left(x-2y\right)}{5y}\)

30 tháng 11 2016

\(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}\)

\(=\frac{x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{x\left(x-2y\right)}{\left(x+2y\right)\left(x-2y\right)}-\frac{4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{x^2+2xy+x^2-2xy-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2x^2-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2x}{x+2y}\)

30 tháng 11 2016

ngu

 

7 tháng 8 2016

e) \(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}\)

\(=\frac{x}{x-2y}+\frac{x}{x+2y}-\frac{4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{x\left(x+2y\right)+x\left(x-2y\right)-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{x^2+2xy+x^2-2xy-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2x^2-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x}{x+2y}\)

7 tháng 8 2016

e ) \(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}\)

\(=\frac{x\left(x+2y\right)+x\left(x-2y\right)-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{x^2+2xy+x^2-2xy-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2x^2-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2x}{x+2y}\)

10 tháng 10 2020

lên qanda mà giải í (điện thoại di động)

10 tháng 10 2020

Tìm chị google đi ! 

29 tháng 9 2019

\(\frac{x^2+3xy+2y^2}{5x^2+4xy-y^2}-\frac{x^2-5xy+4y^2}{-2x^2+4xy-2y^2}\)

\(=\frac{x+2y}{5x-y}-\left[-\frac{x-4y}{2\left(x-y\right)}\right]\)

\(=\frac{x+2y}{5x-y}+\frac{x-4y}{2\left(x-y\right)}\)

\(=\frac{\left(x+2y\right).2\left(x-y\right)}{\left(5x-y\right).2\left(x-y\right)}+\frac{\left(x-4y\right).\left(5x-y\right)}{2\left(x-y\right).\left(5x-y\right)}\)

\(=\frac{\left(x+2y\right).2\left(x-y\right)+\left(x-4y\right).\left(5x-y\right)}{2\left(x-y\right).\left(5x-y\right)}\)

\(=\frac{7x^2-19xy}{2\left(x-y\right).\left(5x-y\right)}\)

25 tháng 8 2017

a, \(A_{\left(x\right)}=2x^2+2xy+y^2-2x+2y+2\)

\(=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(x^2-4x+4\right)-3\)

\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\) hay \(A_{\left(x\right)}\ge-3\)

Dấu ''='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y+1=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)

Vậy \(minA_{\left(x\right)}=-3\) khi x=-3; y=2

b, \(B_{\left(x\right)}=x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\Leftrightarrow B_{\left(x\right)}\ge2\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

Vậy \(minB_{\left(x\right)}=2\Leftrightarrow x=-3;y=1\)

c, \(C_{\left(x\right)}=x^2-10xy+26y^2+14x-76y+59\)

\(=\left(x^2+25y^2+49-10xy+14x-70y\right)+\left(y^2-6y+9\right)+1\)

\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\Leftrightarrow C_{\left(x\right)}\ge1\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-5y+7\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-5y+7=0\\y-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)

Vậy \(minC_{\left(x\right)}=1\Leftrightarrow x=8;y=3\)

d, \(D_{\left(x\right)}=4x^2-4xy+2y^2-20x-4y+174\)

\(=\left(4x^2+y^2+25-4xy-20x+10y\right)+\left(y-14y+49\right)+74\)

\(=\left(2x-y-5\right)^2+\left(y-7\right)^2+74\ge74\Leftrightarrow D_{\left(x\right)}\ge74\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(2x-y-5\right)^2=0\\\left(y-7\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-y-5=0\\y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\y=7\end{matrix}\right.\)

Vậy \(minD_{\left(x\right)}=74\Leftrightarrow x=6;y=7\)

e, \(E_{\left(x\right)}=x^2-2x+y^2+4y+5\)

\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=\left(x-1\right)^2+\left(y+2\right)^2\ge0\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy \(minE_{\left(x\right)}=0\Leftrightarrow x=1;y=-2\)

25 tháng 8 2017

bạn ơi! Sao cái chỗ A(x) =(x+y+1)2+(x-2)2-3 mà chuyển sang lại là -3 v

18 tháng 8 2017

Theo đề ta có : x + 2y = 5

và A = \(x^2-4y^2-2x+10+4xy-4y\)

\(=\left(x^2-4y^2+4xy\right)\) - \(\left(2x+4y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=5^2-2.5+10\)

=25

k nha mn!

4 tháng 9 2017

TA có A=\(A=x^2-4y^2-2x+10+4xy-4xy\)

\(=\left(x^2-4y^2=4xy\right)-\left(2x+4y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=5^2-2.5+10\)

\(=25\)