K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2016

a) \(C=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}\)

\(C=\frac{m^3+2m^2+m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}\)

\(C=\frac{m^2.\left(m+2\right)+m.\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)

\(C=\frac{\left(m+2\right).\left(m^2+m\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)

\(C=\frac{\left(m+2\right).m.\left(m+1\right)+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{a}{a+1}\)

Gọi d = ƯCLN(a; a + 1) (d \(\in\) N*)

\(\Rightarrow\begin{cases}a⋮d\\a+1⋮d\end{cases}\) \(\Rightarrow\left(a+1\right)-a⋮d\)

\(\Rightarrow1⋮d\)

Mà d \(\in\) N* => d = 1

=> ƯCLN(a; a + 1) = 1

=> C là phân số tối giản (đpcm)

b) Ta thấy: m.(m + 1).(m + 2) là tích 3 số nguyên liên tiếp nên\(m\left(m+1\right)\left(m+2\right)⋮3\)

Mà \(5⋮̸3\)\(6⋮3\)

\(\Rightarrow\begin{cases}\left(m+2\right).m.\left(m+1\right)+5⋮̸3\\m\left(m+1\right)\left(m+2\right)+6⋮3\end{cases}\)

Như vậy, đến khi tối giản, phân số C vẫn có tử \(⋮3;\ne2;5\) nên phân số C viết được dưới dạng số thập phân vô hạn tuần hoàn.

30 tháng 3 2016

ko phăn tích đc => tồi giản

21 tháng 10 2016

2 a 8,5:3=2,8(3) b.18,7:6=3,11(6) c.58:11=5,(27) d.14,2:3,33=4,(264)

3a.0,32=8/25 b.-0,124=-31/250 c1,28=32/25 d,-3,12=-78/25

4

1/99=0.(01) 1/999=0,(001)

đúng thì tích nha

 

8 tháng 10 2021

\(1,1\left(234\right)=\dfrac{1247}{1110}\\ -2,23\left(123\right)=-\dfrac{743}{333}\)

lm các bước cụ thể đc k n ?

3 tháng 8 2021

 Đây nundefined

                         HT

A/  C là phân số tới giản

B    C là số thập phân vô hạn tuần hoàn

18 tháng 2 2020

với \(m\in N\) nhé

14 tháng 3 2020

a)Ta có: \(m^3+3m^2+2m+5=m.\left(m^2+3m+2\right)+5\)

                                                       \(=m.\left[m.\left(m+1\right)+2.\left(m+1\right)\right]+5\)

                                                       \(=m.\left(m+1\right).\left(m+2\right)+5\)

Giả sử \(d\) là ƯCLN của  \(m.\left(m+1\right).\left(m+2\right)+5\) và \(m.\left(m+1\right).\left(m+2\right)+6\) 

\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+5\) chia hết cho d và \(m.\left(m+1\right).\left(m+2\right)+6\) chia hết cho \(d\)

\( \implies\) \(\left[m.\left(m+1\right).\left(m+2\right)+6\right]-\left[m.\left(m+1\right).\left(m+2\right)+5\right]\) chia hết cho \(d\)

\( \implies\) \(1\) chia hết cho \(d\) 

\( \implies\) \(d=1\) 

\( \implies\)  \(m.\left(m+1\right).\left(m+2\right)+5\) và \(m.\left(m+1\right).\left(m+2\right)+6\) nguyên tố cùng nhau 

Vậy \(A\) là phân số tối giản

b)Ta thấy : \(m;m+1;m+2\) là \(3\) số tự nhiên liên tiếp nên nếu \(m\) chia \(3\) dư \(1\) thì \(m+2\) chia hết cho \(3\) ; nếu  \(m\) chia \(3\) dư \(2\) thì \(m+1\) chia hết cho \(3\)

 Do đó : \(m.\left(m+1\right).\left(m+2\right)\) chia hết cho \(3\) . Mà \(6\) chia hết cho \(3\)

\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+6\) có ước nguyên tố là \(3\) 

Vậy \(A\) là số thập phân vô hạn tuần hoàn 

a: \(C=\dfrac{m\left(m^2+3m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+5}=\dfrac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+5}=1\)

Do đó: C là phân số tối giản

b: Phân số C=1/1 được viết dưới dạng là số thập phân hữu hạn

16 tháng 12 2016

Tử và mẫu có tổng = 18 nên :

18 = 2 + 16 = 3 + 15 = 4 +14 = 5 + 13 = 6 + 12 = 7 + 11 = 8 + 10 = 9 + 9.

Do phân số tối giản nên có thể chọn 15 cặp:

\(\frac{5}{13}\) hoặc \(\frac{7}{11}\)

 

 

1 tháng 1 2017

Bạn ơi, có sai đề không..?

17 tháng 8 2017

Bài 2: 

a) \(0,32=\frac{8}{25}\) 

b) \(-0,124=\frac{-31}{250}\)

c) \(1,28=\frac{32}{25}\)

d) \(-3,12=\frac{-78}{25}\)